A. For the curve $\vec{x}(t)=\left\langle e^{-3 t}, \frac{t^{2}}{\sin ^{2} t}, \cos 2 t\right\rangle$ in \mathbb{R}^{3}, find the limit at $t=0$.
B. For the curve $\vec{x}(t)=\left\langle t^{2}+1,4 \sqrt{t}, e^{t^{2}-t}\right\rangle$ in \mathbb{R}^{3}, first compute $\vec{x}^{\prime}(t)$, then find a parametrization of the tangent line at the point $(2,4,1)$.
C. For the curve $\vec{x}(t)=\left\langle\frac{1}{t+1}, \frac{1}{t^{2}+1}, \frac{t}{t^{2}+1}\right\rangle$ in \mathbb{R}^{3}, compute $\int_{0}^{1} \vec{x}(t) d t$. (Hint: The antiderivative of $\left(t^{2}+1\right)^{-1}$ is $\arctan t+C$.)
D. Suppose that \vec{x} is a curve in \mathbb{R}^{2}. Compute $\frac{d}{d t}|\vec{x}(t)|$. What must you assume about \vec{x}, for your answer to make sense? I mean, is your answer defined everywhere? Does it help to convert your answer to polar coordinates?
E. For curves \vec{u} and \vec{v} in \mathbb{R}^{3}, prove the product rule: $(\vec{u} \times \vec{v})^{\prime}=\vec{u}^{\prime} \times \vec{v}+\vec{u} \times \vec{v}^{\prime}$.

