A. For the curve
$$\vec{x}(t) = \left\langle e^{-3t}, \frac{t^2}{\sin^2 t}, \cos 2t \right\rangle$$
 in \mathbb{R}^3 , find the limit at $t = 0$.

B. For the curve $\vec{x}(t) = \left\langle t^2 + 1, 4\sqrt{t}, e^{t^2 - t} \right\rangle$ in \mathbb{R}^3 , first compute $\vec{x}'(t)$, then find a parametrization of the tangent line at the point (2, 4, 1).

C. For the curve $\vec{x}(t) = \left\langle \frac{1}{t+1}, \frac{1}{t^2+1}, \frac{t}{t^2+1} \right\rangle$ in \mathbb{R}^3 , compute $\int_0^1 \vec{x}(t) dt$. (Hint: The antiderivative of $(t^2+1)^{-1}$ is $\arctan t + C$.)

D. Suppose that \vec{x} is a curve in \mathbb{R}^2 . Compute $\frac{d}{dt} |\vec{x}(t)|$. What must you assume about \vec{x} , for your answer to make sense? I mean, is your answer defined everywhere? Does it help to convert your answer to polar coordinates?

E. For curves \vec{u} and \vec{v} in \mathbb{R}^3 , prove the product rule: $(\vec{u} \times \vec{v})' = \vec{u}' \times \vec{v} + \vec{u} \times \vec{v}'$.