You have 70 minutes.

No notes, books, calculators, computers, etc. are allowed.

Show all of your work, in as organized a manner as possible. Incorrect answers with solid work often earn partial credit. Correct answers without explanatory work rarely earn full credit.

Do not write "+" to mean "and". Define any notation that you introduce. For example, if you write "P(A)", but neither I nor you have defined an event A, then that writing is not good.

Perform as much algebraic simplification as you can. Do not bother to do non-trivial arithmetic unless it is specifically requested. Mark your final answer clearly.

Good luck.

A. If X and Y are uncorrelated, then must it be true that V(X+Y) = V(X) + V(Y)? Explain.

B. Let $X \sim \text{Unif}(0,1)$. Let F be any CDF that is one-to-one and continuous. Let $Y = F^{-1}(X)$. **B.A.** What is the CDF of Y?

B.B. Suppose that Y is the score for a randomly chosen student on a standardized exam with many questions and many students. What then is the meaning of the random variable F(Y)?

C. Roulette is a gambling game played in casinos. All that you must know about it is that, if X is the casino's earnings on a single run of the game, then P(X = 1) = 20/38 and P(X = -1) = 18/38. Let S_n be the casino's total earnings from n independent runs of the game. **C.A.** What is E(X)?

C.B. What is SD(X)?

C.C. What is $E(S_n)$?

C.D. What is $SD(S_n)$?

D. In genetics, a phenomenon known as *crossover* can occur at any point along a chromosome. Geneticists are particularly interested in the case where there is an odd number of crossovers in a chromosome segment, because it means that a *recombination* has occurred in that segment.

It is common to model crossovers using a Poisson process with rate λ . To clarify: We've talked about using Poisson processes to model occurrences in an interval [0, t] of time, but they can just as well be used to model occurrences in an interval $[0, \ell]$ of length.

D.A. Let X be the number of crossovers in $[0, \ell]$. What is the distribution of X? Be sure to specify its parameters in terms of λ , ℓ , and any other necessary quantities.

D.B. What is the probability of a recombination in $[0, \ell]$? Leave your answer in non-closed form: a sum, series, or integral.

D.C. Evaluate that probability in closed form. Hint: First evaluate P(X is even) - P(X is odd).

E. Recall that a Rayleigh-distributed X has PDF $f_X(x) = xe^{-x^2/2}$ on support $(0, \infty)$. Suppose that I choose a Rayleigh X and then you choose $Y \sim \text{Norm}(X, 1)$. **E.A.** What is the joint PDF of X and Y?

E.B. What is the marginal PDF of Y? You may leave your answer in non-closed form: a sum, series, or integral.

E.C. Are X and Y independent? Explain.