
Exam C Solutions CS 311, Winter 2021

A.A. For each pixel in your screen or window, you have to do a mathematical calculation called

“casting a ray into the scene”. When the ray hits an object in the scene, you might have to cast

multiple recursive rays, depending on how many lights there are, whether the object is reflective,

whether it’s translucent, etc. That is, your first ray might branch into b rays. And each of those

recursive rays might branch into b recursive rays. And so on. In principle, there is no end to the

recursion. In practice, we cut it off at some depth d. So there’s something like O(bd) work being

done. That’s expensive. And we haven’t even talked about how the time complexity depends

on the number p of pixels (linearly) or the number n of scene objects or triangles (linearly at

each recursion). The algorithm can be parallelized — especially over the pixels in the screen

— but this parallelization is not widely available in practice, and it does nothing to reduce the

complexity in theory.

[To go beyond what I expect of a CS 311 student: Let T (d) be the number of ray-body

intersections needed to color a single pixel of the screen at recursion depth cutoff d. Suppose

that we use our usual shading model with ` shadow rays (one for each light), one mirror ray,

and one transmission ray. Then T (d) can be expressed using a recurrence relation

T (d) = n + `n + (n + T (d− 1)) + (n + T (d− 1))

= (` + 3)n + 2T (d− 1)

with initial condition T (0) = (` + 1)n. If we ignore the (` + 3)n term, then the solution is

T (d) = (` + 1)n2d, so the overall time complexity is O(p`n2d). Incorporating the (` + 3)n term

makes the running time even greater, although it’s still O(p`n2d) I think. Try to fill in the

details.]

A.B. The triangle rasterization algorithm makes a Crucial Assumption: The scene can be broken

into triangles that are independent of each other. That is, when you’re rendering one triangle,

you don’t need to know anything about what’s happening with other triangles. This assumption

is not realistic; for example, it requires us to handle shadows using an expensive add-on called

“shadow mapping”. If p is the number of pixels, n the number of scene objects or triangles,

and ` the number of lights, then the time complexity is something like O(pn`) without shadow

mapping or O(pn`2) with shadow mapping on all lights. In any event, there is no exponential

complexity as in ray tracing. Also, massively parallel hardware for triangle rasterization is

mature and widely available, which decreases the practical running times, even if it has no effect

on the theoretical complexity.

[In practice, not many lights are shadow-mapped, to keep the complexity at O(pn`). For

example, on the last day of class I showed a scene from Deus Ex: Human Revolution using more

than 40 lights, only two of which were shadow-mapped. Notice that this O(pn`) matches the

ray-tracing complexity O(p`n2d) when d = 0. In a sense, ray tracing lets us escape the confines

1



Exam C Solutions CS 311, Winter 2021

of the Crucial Assumption, at a cost that is exponential in how far we want to go beyond those

confines.]

B.A. [Many students responded to the prompt by offering other algorithms, that did not follow

the requested structure. I am not asking about algorithms for box intersection; I am asking

about this algorithm for box intersection.]

We begin by transforming the ray data ~e, ~d into local coordinates of the box.

For the X = left plane, compute the intersection time t for ~x(t) = ~e + t~d. (This t exists

because we are ignoring the special case. It might not be in [tstart, tend]. By the way, we’re

solving e0 + td0 = `, so we get t = (`− e0)/d0, but I’m not grading you for algebra.) Based on

d0, determine whether that intersection is entering or exiting. If it’s entering, then set tstart to

max(tstart, t). If it’s exiting, then set tend to min(tend, t). After this operation, [tstart, tend] is the

time interval that the ray spends in the half space whose boundary is the X = left plane. If

tstart > tend, then the interval is empty, so return rayNONE.

Similarly, for each of the other planes, compute the intersection time t, use the local ~d to

decide entering vs. exiting, and update tstart and tend. Return rayNONE if the interval is empty.

At the end of this process, [tstart, tend] is the non-empty time interval that the ray spends

inside the box. There are two cases. If tstart is still rayEPSILON, then the camera is inside the

box, so return rayEXIT with tend. Otherwise, return rayENTER with tstart.

B.B. The basic idea is simple: Remember which side of the box was hit, so that you know its

local normal. Return that local normal transformed to global coordinates.

Here’s how we can incorporate the idea into our algorithm above. Maintain two more vari-

ables, ~nstart and ~nend. Whenever you update tstart or tend, also update ~nstart or ~nend respectively.

For example, if your first intersection, with the X = left plane, causes tend to be updated, then

at the same time set ~nend to (−1, 0, 0). At the end of the algorithm, the local normal is ~nstart if

you’re returning tstart or ~nend if you’re returning tend. Before you return the normal, transform

it from local to global coordinates.

C. Assume for a moment that all translucent bodies have index of refraction 1. Then we

could modify our usual shadowing algorithm by casting the shadow ray toward the light source

recursively, tracing its path through translucent bodies. If the shadow ray hits an opaque

object, then the fragment is in shadow as usual. If it hits only translucent objects, then some

light reaches the fragment. The amount of light is the light’s original color modulated by (~ctrans)
`

for each transmission, as we did for translucency. We could even let our recursive shadow rays

branch to handle mirroring. This whole process would be expensive but not much harder than

what we currently have. [The time complexity would increase from something like O(2d) to

something like O((` + 2)d). Also, one student wisely points out that textured light, which we

2



Exam C Solutions CS 311, Winter 2021

implemented in rasterization, is a special case of this problem.]

The problem is dramatically harder if we account for indices of refraction other than 1.

When we cast a shadow ray from a fragment toward a light source, we do so because we assume

that the light (if any) will take a straight path from the source to the fragment. The presence of

translucent bodies means that light can take a bent path instead. Which bent path? It’s hard

to know. There is only one straight path, but there are infinitely many bent paths. So in which

direction do we even cast our shadow ray?

I think that we would have to use something like distribution ray tracing, which was discussed

briefly in class. Send out many rays from the fragment. For each one, do the recursive ray tracing

outlined above. So we’re adding the expense of recursive ray tracing, but more importantly we’re

adding the expense of distribution ray tracing. On the plus side, once we’re doing distribution

ray tracing, we can probably improve some of our other lighting effects.

3


