This first problem is like Problem 5.31 but easier. To understand it, first read the description of the $3 x+1$ problem in Problem 5.31. It's a notorious unsolved problem in mathematics. Then, fix the input alphabet $\Sigma=\{0,1\}$, and let

$$
A L L_{T M}=\{\langle M\rangle: M \text { accepts all strings over } \Sigma\} .
$$

A. Suppose that you had a decider H for $A L L_{T M}$. Explain how you could use H to design a decider D that outputs the answer to the $3 x+1$ problem.

Recall that, for any two languages A and B,

$$
A / B=\{w: \exists x \in B \text { such that } w x \in A\} .
$$

In an earlier assignment, we showed that if A is regular then A / B is regular. Our proof was nonconstructive. This next problem suggests that the proof must be non-constructive - because it must be non-constructive even in the relatively tame case where B is recognizable.
B. Prove that such an N cannot exist. (Hint: Use some of the knowledge about A / B, which you toiled to gain in earlier assignments.)

This last problem is noteworthy, in that it's similar to Problem 5.15 but reaches the opposite conclusion.
C. Problem 5.14 (about a Turing machine that tries to move off the end of its tape).

