Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function that grows without bound. That is, $\lim _{n \rightarrow \infty} f(n)=\infty$. In the first three problems below, you prove that $\mathcal{O}\left(2^{f(n)}\right)$ is a proper subset of $2^{\mathcal{O}(f(n))}$.
A. Give rigorous definitions of $\mathcal{O}\left(2^{f(n)}\right)$ and $2^{\mathcal{O}(f(n))}$. (You might want to do the next two problems, before deciding that you're done with problem A.)
B. Prove that if $g$ is $\mathcal{O}\left(2^{f(n)}\right)$ then $g$ is $2^{\mathcal{O}(f(n))}$.
C. Prove that there is a $g$ in $2^{\mathcal{O}(f(n))}$ that is not in $\mathcal{O}\left(2^{f(n)}\right)$.

Earlier in our course - maybe on Day 15? - we described a Turing machine for testing whether a given directed graph was in fact a connected undirected graph.
D. What are the time complexity and space complexity of that Turing machine? Analyze them in detail, and state your answers using $\mathcal{O}$ notation. Actually, give two answers for each: one in terms of the input size $n$, and one in terms of the number $m$ of nodes in the graph.

