
Exam A Solutions CS 311, Winter 2019

A. [Rather than draw the graph, I give the same information in text. By the way, if you

examine the #include statements in 130mainDepth.c, you will see the same files in roughly

opposite order. I do not mention main.c, because it is the “user” of our graphics engine, not

part of it. I did not penalize students who included main.c in the graph. I also did not penalize

students who omitted pixel.h.]

I would draw six of the nodes in this order, from top to bottom:

• mesh.c has outgoing arrows to triangle.c and shading.c because of its rendering algorithm.

It has arrows to depth.c and texture.c, just because it must pass those data types to

triangle.c. It should also have an arrow to vector.c because of the mesh builders.

• triangle.c has arrows to vector.c, matrix.c, shading.c, texture.c, depth.c, and pixel.h.

• shading.c has an arrow to texture.c.

• texture.c has an arrow to vector.c.

• matrix.c has an arrow to vector.c.

• vector.c has no outgoing arrows.

Then I would draw these nodes in a second column:

• depth.c has no outgoing arrows.

• pixel.h has no outgoing arrows.

B. Depth buffering solves the occlusion problem, which is: When multiple objects in a 3D scene

are competing to be rendered in a given pixel, the one that is closest to the viewer should win.

The only other solution that we’ve discussed is the painter’s algorithm, which is: Sort the

scene objects from distal to proximal, and render them in that order.

We prefer depth buffering because the painter’s algorithm handles only convex, non-intersecting

scene objects. It does not handle non-convex objects and intersecting objects. Depth buffering

handles all of these objects easily. The only drawback to depth buffering is the extra memory re-

quired to hold the depth buffer. Well, another drawback is occasional “stitching” or “Z-fighting”

effects from objects at numerically indistinguishable depths.

C. The vertex shader has access to uniforms and attributes. If there are any texture coordinates

among the uniforms and attributes, then they have not yet been interpolated. So the vertex

shader could sample textures only at uniform or attribute texture coordinates — not varying.

But texels sampled with uniform coordinates might as well be in the uniforms, and texels sampled

1



Exam A Solutions CS 311, Winter 2019

with attribute coordinates might as well be in the attributes. Therefore, giving the vertex shader

access to texture sampling seems to improve its flexibility very little.

[This was the most speculative question on the exam. There is not really any right answer.

I just wanted to see what students said. For example, a good thing to say was that texture

coordinates haven’t yet been interpolated.]

[Actually, attribute texture coordinate sampling could be useful. It would allow us to imple-

ment highly complicated transformations of the attributes, using the texture as a lookup table.

For example, suppose we render mesh A with texture B, and in a different part of the scene we

render mesh A with texture C. We could use the differing textures to implement complicated

transformations of A’s attributes.]

D. [Several students had trouble understanding this question, but it is not an unreasonable

question. It was foreshadowed in our Day 06 homework, when we implemented 080mesh.c. I

also alluded to it in the Day 10 study questions. Also, multiple students raised these issues with

me in office hours, without any prompting from me.]

One algorithm for meshRender is:

1. For each triangle:

(a) Transform the first vertex from attribute to varying using the vertex shader.

(b) Transform the second vertex.

(c) Transform the third vertex.

(d) Pass the three varyings just made to triRender.

The problem with this algorithm is that, if a vertex is used in multiple triangles, then it is

transformed multiple times by the vertex shader. So there is wasted work. [A similar waste

issue motivated our mesh data structure in the first place.] So here is a second algorithm for

meshRender:

1. Allocate a large array to hold the varying versions of all of the vertices.

2. For each vertex:

(a) Transform the vertex from attribute to varying using the vertex shader.

(b) Store the varying vector in the large array.

3. For each triangle:

(a) Locate the triangle’s three varyings in the large array.

(b) Pass the three varyings to triRender.

2



Exam A Solutions CS 311, Winter 2019

The problem with this algorithm is that it uses a lot of extra memory. So what we have here is

a classic time-space tradeoff. Which algorithm is better depends on our resource constraints —

for example, how much memory we have.

[In today’s computers, using memory can take a great deal of time, and hence the second

algorithm may be slower than the first, even though it does fewer computations. It all depends

on the relative speeds of the CPU and RAM, the sizes of the memory caches, the size of the

mesh, etc. CS 311 students are not expected to know all of this, but students who have taken

CS 208 might know something about it.]

[Several students instead discussed depth testing before or after the fragment shader. The

former is faster and the latter more flexible. A good answer along those lines earned lots of

points. However, this change requires semantic changes to meshRender or the shaders. It is not

merely a semantically equivalent implementation change to meshRender. So it is not as good of

an answer as the one given above.]

E.A. There are no technical restrictions on how attribute vectors are formatted. The attributes

can be anything, and they can be listed in any order. As long as the vertex shader knows their

format, it can “parse” them to produce varying vectors.

Here’s another angle. In mesh.c, our 2D convenience builders produce attributes in the

format XYST, and our 3D convenience builders produce attributes in the format XYZSTNOP.

But you don’t have to use these convenience builders. You can build any mesh you want using

the other methods of meshMesh. And you can, for example, put X and Y in the 6th and 4th

attribute components. Nothing in meshRender, triRender, etc. will break.

E.B. There is one crucial restriction on how varying vectors are formatted: The X and Y

components must come first. That’s because the rasterizer is hard-wired to rasterize over the

first two components. As it rasterizes, it computes linear interpolations, again based on the first

two components. If we put X and Y in the 6th and 4th varying components instead of the 0th

and 1th, then triRender would break.

[There is no theoretical reason why we had to write triRender this way. You can imagine

making the components-over-which-to-rasterize-and-interpolate customizable. The rendering

algorithm would take, as part of its many inputs, the numbers that we’ve been calling mainVARYX

and mainVARYY. Commonly they would be 0 and 1, but you could change them to 6 and 4 if you

really wanted. There is no theoretical obstacle to doing this, but we have not done this, and we

could not do it without editing triangle.c, in contravention of the problem.]

[Some students said that the varyings must begin with X, Y, and Z. But the fragment shader

does not have to produce its D value from the third component of the varying vector. In fact,

I’ve done demos in class where D comes from the uniforms.]

3


