A. What are the eigenvalues of X, Y, and Z ? (Hint: First compute the trace and determinant. Then compute the eigenvalues from them.)
B. Do Exercise A.6.2 from the Complex Linear Algebra tutorial. But please replace A with $|\chi\rangle$ and replace B with $|\omega\rangle$, now that we know that notation for vectors in \mathbb{C}^{2}.
C. Beyond mere practice with one-qbit gates, this exercise plays a crucial role in the low-level implementations that we study later in the course.

1. Let U be any diagonal one-qbit gate. Let $\sqrt{\operatorname{det} U}$ be either of the two complex numbers that square to $\operatorname{det} U$. Prove, as explicitly as possible, that there exist diagonal one-qbit gates V and W such that

$$
U=\sqrt{\operatorname{det} U} V X V^{*} W X W^{*} .
$$

2. Repeat part 1 of this problem, but with both occurrences of the word "diagonal" removed. (Hint: In the unitary matrix part of our Complex Linear Algebra tutorial, there is a fact that, in combination with part 1 , greatly expedites this problem.)
D. Implement the measurement function below. (My implementation is six lines of code.) Print/write your code and the result of measurementTest345 on paper, so that the grader is convinced that your code works.
```
import math
import random
import numpy
# The classical one-qbit states.
ket0 = numpy.array([1 + 0j, 0 + 0j])
ket1 = numpy.array([0 + 0j, 1 + 0j])
# Write this function. Its input is a one-qbit state. It returns either ket0 or ket1.
def measurement(state):
    pass
# For large m, this function should print a number close to 0.64. (Why?)
def measurementTest345(m):
    psi = 0.6 * ket0 + 0.8 * ket1
    def f():
        if (measurement(psi) == ket0).all():
```

```
        return 0
    else:
        return 1
acc = 0
for i in range(m):
    acc += f()
return acc / m
```

The following exercise is optional. It is very popular construction called the Bloch sphere. It develops a more refined picture of the set of one-qbit states, taking into account global phase changes. I don't emphasize it in this course, because it doesn't generalize usefully to multiple qbits. Nonetheless, you may find it instructive.

1. Let $|\psi\rangle \in \mathbb{C}^{2}$ be any one-qbit state. Prove that there exist $t \in[0,2 \pi), w \in[0,2 \pi)$, and $v \in[0, \pi]$ such that

$$
|\psi\rangle=e^{i t}\left[\begin{array}{c}
\cos (v / 2) \tag{1}\\
\sin (v / 2) e^{i w}
\end{array}\right] .
$$

2. When $v=0$, which popular state arises (up to global phase change)? When $v=\pi$, which popular state arises?
3. Assume that $v=0$ and $v=\pi$ are the only cases where differing values of w and v produce indistinguishable states. Explain - intuitively, not rigorously - why the set of physically distinguishable one-qbit states forms a sphere. (Hint: Spherical coordinates. If you don't know them, then look them up.)
4. Consider the map $|\chi\rangle \mapsto\left|\chi_{0}\right|^{2}$. Intuitively, this map sends a one-qbit state to its resulting probability distribution over the classical states. (Notice that $\left|\chi_{1}\right|^{2}$ is determined by $\left|\chi_{0}\right|^{2}$ because they sum to 1.) Interpret this map geometrically, as a map from the sphere to another set.
