
Day 16 Project Work CS 358, Winter 2022

This is Python project work, due at the end of the term.

Before you start coding, you might want to do this study question (but not hand it in):

Write out the one-qbit QFT gate T , as a 2 × 2 matrix. Write out the two-qbit T , as a 4 × 4

matrix.

A. In qGates.py, write the following function.

def fourier(n):

’’’Assumes n >= 1. Returns the n-qbit quantum Fourier transform gate T.’’’

B. In qGates.py, paste the following function, and use it to test your fourier function. This

is not a great test, because I don’t know how to write a great test without giving away some

version of the fourier implementation. If you like, add more cases.

def fourierTest(n):

if n == 1:

Explicitly check the answer.

t = fourier(1)

if qu.equal(t, qc.h, 0.000001):

print("passed fourierTest")

else:

print("failed fourierTest")

print(" got T = ...")

print(t)

else:

t = fourier(n)

Check the first row and column.

const = pow(2, -n / 2) + 0j

for j in range(2**n):

if not qu.equal(t[0, j], const, 0.000001):

print("failed fourierTest first part")

print(" t = ")

print(t)

return

for i in range(2**n):

if not qu.equal(t[i, 0], const, 0.000001):

print("failed fourierTest first part")

1

Day 16 Project Work CS 358, Winter 2022

print(" t = ")

print(t)

return

print("passed fourierTest first part")

Check that T is unitary.

tStar = numpy.conj(numpy.transpose(t))

tStarT = numpy.matmul(tStar, t)

id = numpy.identity(2**n, dtype=qc.one.dtype)

if qu.equal(tStarT, id, 0.000001):

print("passed fourierTest second part")

else:

print("failed fourierTest second part")

print(" T^* T = ...")

print(tStarT)

C. In qAlgorithms.py, write the following function to implement the quantum core subroutine

for Shor’s algorithm as described in our lectures. The output is the output of the second partial

measurement — the one on the input register.

def shor(n, f):

’’’Assumes n >= 1. Given an (n + n)-qbit gate F representing a function

f: {0, 1}^n -> {0, 1}^n of the form f(l) = k^l % m, returns a list or tuple

of n classical one-qbit states (|0> or |1>) corresponding to the output of

Shor’s quantum circuit.’’’

D. In qAlgorithms.py, write a function shorTest(n, m). It takes as input the integers n and

m as specified in our lectures. It may assume that 2n ≥ m2, because that’s required by Shor’s

algorithm. It may also assume that n ≥ 4, because handling the low-n cases is overly tedious.

Then it does these steps:

1. Chooses a random k that is coprime to m (math.gcd should help).

2. Builds the function f that computes powers of k modulo m (qu.powerMod should help).

3. Runs Shor’s quantum core subroutine on the corresponding gate F .

4. Interprets the output as an integer b ∈ {0, . . . , 2n − 1}.

5. Prints b. (Later we will improve this step, to make shorTest a real test.)

2

Day 16 Project Work CS 358, Winter 2022

I recommend that you run the test at least once, just to make sure that it runs. For example,

try shorTest(4, 3), shorTest(4, 4), and shorTest(5, 5). Last time I tried shorTest(8,

15), the operating system stopped Python after five minutes of painful churning.

3

