A. Let $m=1022117$. Assume that m is a product of two distinct primes. Suppose that, using Shor's algorithm, you compute the following periods in $(\mathbb{Z} / m \mathbb{Z})^{*}$:

1. The period of $k=966244$ is $p=7084$.
2. The period of $k=713912$ is $p=7728$.
3. The period of $k=788451$ is $p=255024$.

Is this enough information to factor m ? Execute the factoring algorithm.
The naive way to factor a large integer m is trial division: Divide m by 2 , then 3 , then 4 , then 5 , and so on, until you find a factor of m. This is slow, but Grover's algorithm can speed it up, if we can apply Grover's algorithm to the following f.
B. Suppose that you are given m such that $m=a b$, where a and b are distinct primes. Find an n and a classical function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\sum_{\alpha} f(\alpha)=1$ and $f(\alpha)=1$ if and only if the corresponding integer a is a factor of m. (This requires some care. You might want to write f in pseudocode or Python.)

The running time of algorithms for factoring m are often expressed in the notation

$$
L[x, y]=e^{(y+o(1))(\log m)^{x}(\log \log m)^{1-x}}
$$

where $x \in[0,1]$ (and \log means the natural logarithm - base e). The value of x is more important than the value of y, so we are often vague about y. The quadratic sieve has running time $L[1 / 2, y]$ for some y. The number field sieve and function field sieve have running times $L[1 / 3, y]$ (assuming that the generalized Riemann hypothesis is true).
C. For each of the following questions, give the answer in terms of $n=\log _{2} m$, which is the number of bits needed to represent m.

1. What is $L[1, y]$? Plug in 1 for x, simplify, and re-express in terms of n.
2. Similarly, what is $L[0, y]$?
3. Later this term we will see that Shor's algorithm has complexity $\mathcal{O}\left(n^{2}\right)$. (Here, $n=$ $2 \log _{2} m$, but the extra factor of 2 doesn't matter.) So where does it fall on the L scale?
4. Where does trial division fall on the L scale?
5. Assuming that we can apply Grover's algorithm (with known $k=1$) to your f from Problem B, we get a factoring algorithm. Where does this algorithm fall on the L scale?
