A.A. $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ i \frac{1}{\sqrt{2}}\end{array}\right] \otimes\left[\begin{array}{c}\frac{\sqrt{3}}{2}-\frac{1}{2} i \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \cdot\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) \\ \frac{1}{\sqrt{2}} \cdot 0 \\ i \frac{1}{\sqrt{2}} \cdot\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) \\ i \frac{1}{\sqrt{2}} \cdot 0\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} i \\ 0 \\ \frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}} i \\ 0\end{array}\right]$.
A.B. $X \otimes H=\left[\begin{array}{cccc}0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0\end{array}\right]$.
B.A. α is a label or name for a quantum state or any complex vector. In this example, we are defining a linear transformation according to its effect on the standard basis, so α is the name of a standard basis vector $|\alpha\rangle$ in \mathbb{C}^{2}. So $\alpha=0$ or $\alpha=1$. More generally, if $|\alpha\rangle$ were a standard basis vector in $\mathbb{C}^{2^{n}}$, then α would be an n-bit bit string.
B.B. $|\alpha\rangle$ is one of the standard basis vectors of \mathbb{C}^{2}. So $|\alpha\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $|\alpha\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
B.C. The first f is a two-qbit quantum gate. That is, it is a unitary linear transformation of \mathbb{C}^{4} or equivalently a 4×4 unitary matrix.
B.D. The second f is a classical one-bit function $f:\{0,1\} \rightarrow\{0,1\}$. There are four possibilities for what f is.
C.A. When $|\alpha\rangle$ is measured, the state changes to $|0\rangle$ with probability $\frac{1}{2}$ and to $|1\rangle$ with probability $\frac{1}{2}$. Exactly the same answer holds for $|\beta\rangle$. They are both uniform superpositions of the classical one-qbit states.
C.B. Here is a quantum algorithm that behaves differently on $|\alpha\rangle$ than on $|\beta\rangle$: Multiply the state by H and then measure. If the state is $|\alpha\rangle$, then the measurement certainly produces $|0\rangle$. If the state is $|\beta\rangle$, then the measurement certainly produces $|1\rangle$.
D.A. [I'll omit the drawing from these solutions. It should have, from left to right, two wires crossing, then a CNOT gate, then two wires crossing.]
D.B. The matrices for SWAP and CNOT are, respectively,

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

Therefore the matrix for SWAP • CNOT • SWAP is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

which we have seen as the upside-down CNOT.
E.A. TRUE. [The exponential map wraps the imaginary axis around the unit circle infinitely many times.]
E.B. TRUE. [If U is unitary, then $U^{-1}=U^{*}$.]
E.C. TRUE. [If the two-qbit state $|\chi\rangle$ is classical, then three of its entries are 0 , so it satisfies the unentanglement condition $\chi_{00} \chi_{11}=\chi_{01} \chi_{10}$.]
E.D. FALSE. [Two of the classical one-bit gates are non-invertible and hence cannot be implemented as one-qbit gates.]
E.E. FALSE. [The two-bit AND (or NAND, or OR, or NOR) gate cannot be implemented as a two-qbit gate.]
E.F. TRUE. [Any two-qbit state is a linear combination of classical two-qbit states.]
E.G. FALSE. [Partial measurement makes one of the qbits classical, but not necessarily the other.]
E.H. TRUE. [And one of the qbits is also classical.]
F.A. Deutsch's problem is: Given a two-qbit gate that implements one of the four classical one-bit functions f (in the usual $|\alpha\rangle|\beta\rangle \mapsto|\alpha\rangle|\beta \oplus f(\alpha)\rangle$ way), determine whether the hidden function f is constant or non-constant.
F.B. Deutsch's algorithm is: Compute $(H \otimes H) \cdot f \cdot(H \otimes H) \cdot(X \otimes X)|0\rangle|0\rangle$. Then measure the first qbit. If it is $|0\rangle$, then f is non-constant. If it is $|1\rangle$, then f is constant.

