
Exam A Solutions CS 358, Spring 2018, Carleton College
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B.A. α is a label or name for a quantum state or any complex vector. In this example, we are

defining a linear transformation according to its effect on the standard basis, so α is the name

of a standard basis vector |α〉 in C2. So α = 0 or α = 1. More generally, if |α〉 were a standard

basis vector in C2n , then α would be an n-bit bit string.

B.B. |α〉 is one of the standard basis vectors of C2. So |α〉 =

[
1

0

]
or |α〉 =

[
0

1

]
.

B.C. The first f is a two-qbit quantum gate. That is, it is a unitary linear transformation of C4

or equivalently a 4× 4 unitary matrix.

B.D. The second f is a classical one-bit function f : {0, 1} → {0, 1}. There are four possibilities

for what f is.

C.A. When |α〉 is measured, the state changes to |0〉 with probability 1
2 and to |1〉 with probability

1
2 . Exactly the same answer holds for |β〉. They are both uniform superpositions of the classical

one-qbit states.

C.B. Here is a quantum algorithm that behaves differently on |α〉 than on |β〉: Multiply the

state by H and then measure. If the state is |α〉, then the measurement certainly produces |0〉.
If the state is |β〉, then the measurement certainly produces |1〉.

D.A. [I’ll omit the drawing from these solutions. It should have, from left to right, two wires

crossing, then a CNOT gate, then two wires crossing.]

D.B. The matrices for SWAP and CNOT are, respectively,
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .
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Therefore the matrix for SWAP · CNOT · SWAP is
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ,

which we have seen as the upside-down CNOT.

E.A. TRUE. [The exponential map wraps the imaginary axis around the unit circle infinitely

many times.]

E.B. TRUE. [If U is unitary, then U−1 = U∗.]

E.C. TRUE. [If the two-qbit state |χ〉 is classical, then three of its entries are 0, so it satisfies

the unentanglement condition χ00χ11 = χ01χ10.]

E.D. FALSE. [Two of the classical one-bit gates are non-invertible and hence cannot be imple-

mented as one-qbit gates.]

E.E. FALSE. [The two-bit AND (or NAND, or OR, or NOR) gate cannot be implemented as a

two-qbit gate.]

E.F. TRUE. [Any two-qbit state is a linear combination of classical two-qbit states.]

E.G. FALSE. [Partial measurement makes one of the qbits classical, but not necessarily the

other.]

E.H. TRUE. [And one of the qbits is also classical.]

F.A. Deutsch’s problem is: Given a two-qbit gate that implements one of the four classical

one-bit functions f (in the usual |α〉 |β〉 7→ |α〉 |β ⊕ f(α)〉 way), determine whether the hidden

function f is constant or non-constant.

F.B. Deutsch’s algorithm is: Compute (H ⊗H) · f · (H ⊗H) · (X ⊗ X) |0〉 |0〉. Then measure

the first qbit. If it is |0〉, then f is non-constant. If it is |1〉, then f is constant.
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