A.A. Let U be a 2×2 matrix whose first column is $|\omega\rangle$ and whose second column is a unit vector $|\chi\rangle$ such that $\langle\chi \mid \omega\rangle=0$. For example, one could set

$$
U=\left[\begin{array}{cc}
\omega_{0} & -\overline{\omega_{1}} \\
\omega_{1} & \overline{\omega_{0}}
\end{array}\right]
$$

Then U is unitary, and so is U^{*}, and hence U^{*} is a valid quantum gate. If Babatope's $|\beta\rangle=|0\rangle$, then he measures $|\psi\rangle$. If $|\beta\rangle=|1\rangle$, then he measures $U^{*}|\psi\rangle$. The rest of the protocol is unchanged.
[That's a sketch of an answer. I leave it to you to prove that U is unitary and to understand why this works. Certainly you should check that when $|\omega\rangle=|+\rangle$ we recover the original protocol.]
A.B. It's bad for Ariko and Babatope to use a $|\omega\rangle$ such that $\langle 0 \mid \omega\rangle=0$. For then the matrix

$$
V=\left[\begin{array}{ll}
1 & \omega_{0} \\
0 & \omega_{1}
\end{array}\right]
$$

which has $|0\rangle$ and $|\omega\rangle$ in its columns, is unitary, and Ariko's encoding of $|\alpha\rangle$ into $|\psi\rangle$ amounts to $|\psi\rangle=V|\alpha\rangle$. Einar, upon intercepting Ariko's $|\psi\rangle$, can measure $V^{*}|\psi\rangle$, recover $|\alpha\rangle$ with probability 1 , reconstruct $|\psi\rangle=V|\alpha\rangle$, and pass this $|\psi\rangle$ on to Babatope without detection.
[This is a slightly easier version of a problem that appeared in our homework. By the way, the title of Bennett's 1992 paper was, "Quantum cryptography using any two nonorthogonal states". Beyond non-orthogonality, you probably want your two encoding vectors to be as far from parallel as possible and as far from orthogonal as possible, to improve the probabilities. That's why $|0\rangle$ and $|+\rangle$ are the standard.]
B. The state $|\psi\rangle$ can be written

$$
\begin{aligned}
|\psi\rangle & =\left[\begin{array}{l}
\psi_{00} \\
\psi_{01} \\
\psi_{10} \\
\psi_{11}
\end{array}\right] \\
& =\sqrt{\left|\psi_{00}\right|^{2}+\left|\psi_{10}\right|^{2}}\left[\begin{array}{c}
\frac{\psi_{00}}{\sqrt{\left|\psi_{00}\right|^{2}+\left|\psi_{10}\right|^{2}}} \\
0 \\
\frac{\psi_{10}}{\sqrt{\left|\psi_{00}\right|^{2}+\left|\psi_{10}\right|^{2}}} \\
0
\end{array}\right]+\sqrt{\left|\psi_{01}\right|^{2}+\left|\psi_{11}\right|^{2}}\left[\begin{array}{c}
0 \\
\frac{\psi_{01}}{\sqrt{\left|\psi_{01}\right|^{2}+\left|\psi_{11}\right|^{2}}} \\
0 \\
\frac{\psi_{11}}{\sqrt{\left|\psi_{01}\right|^{2}+\left|\psi_{11}\right|^{2}}}
\end{array}\right] \\
& =\sigma|\chi\rangle|0\rangle+\tau|\phi\rangle|1\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma & =\sqrt{\left|\psi_{00}\right|^{2}+\left|\psi_{10}\right|^{2}} \\
|\chi\rangle & =\frac{1}{\sigma}\left[\begin{array}{c}
\psi_{00} \\
\psi_{10}
\end{array}\right] \\
\tau & =\sqrt{\left|\psi_{01}\right|^{2}+\left|\psi_{11}\right|^{2}} \\
|\phi\rangle & =\frac{1}{\tau}\left[\begin{array}{c}
\psi_{01} \\
\psi_{11}
\end{array}\right] .
\end{aligned}
$$

Partial measurement of the second qbit produces

$$
|\psi\rangle \mapsto \begin{cases}|\chi\rangle|0\rangle & \text { with probability }|\sigma|^{2} \\ |\phi\rangle|1\rangle & \text { with probability }|\tau|^{2} .\end{cases}
$$

In summary, we observe $|1\rangle$ on the second qbit with probability $|\tau|^{2}=\left|\psi_{01}\right|^{2}+\left|\psi_{11}\right|^{2}$.
C. We compute

$$
\begin{aligned}
(H \otimes H) \cdot|1\rangle|0\rangle & =\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \\
& =\frac{1}{2}|0\rangle|0\rangle+\frac{1}{2}|0\rangle|1\rangle-\frac{1}{2}|1\rangle|0\rangle-\frac{1}{2}|1\rangle|1\rangle .
\end{aligned}
$$

Then, by linearity, applying F yields
no matter what $f(0)$ and $f(1)$ are. The Hadamard layer transforms this state to $|1\rangle|0\rangle$. Thus measurement of the first qbit produces $|1\rangle$ with probability 1 , no matter what the details of f are. In summary, this version of the algorithm is useless.
D. We have proved in homework that $(U \otimes V)^{*}=U^{*} \otimes V^{*}$. Then, using the fact that $(A \otimes$ C) $(B \otimes D)=A B \otimes C D$, we have

$$
\begin{aligned}
(U \otimes V)^{*}(U \otimes V) & =\left(U^{*} \otimes V^{*}\right)(U \otimes V) \\
& =U^{*} U \otimes V^{*} V \\
& =I \otimes I \\
& =I
\end{aligned}
$$

Thus $U \otimes V$ is unitary.

