A. The key concept is that, if F is invertible (and takes classical states to classical states), then it is a permutation of the classical states, so it is a permutation matrix, so it is a unitary matrix, so it is a valid gate.

1. This F is its own inverse and hence a valid gate by the reasoning above. It is symmetric to - and equally as good as - our usual convention.
2. This construction does not generally work. For example, if f is the identity function $(f(\alpha)=\alpha)$, then $F \cdot|\alpha\rangle|\beta\rangle=|0 \cdots 0\rangle|\beta\rangle$, so F is not invertible and not unitary.
3. Define G by $G \cdot|\alpha\rangle|\beta\rangle=|\operatorname{rev}(\alpha)\rangle|\beta \oplus f(\operatorname{rev}(\alpha))\rangle$. Then

$$
G \cdot F \cdot|\alpha\rangle|\beta\rangle=G \cdot|\operatorname{rev}(\alpha)\rangle|\beta \oplus f(\alpha)\rangle=|\alpha\rangle|\beta \oplus f(\alpha) \oplus f(\alpha)\rangle=|\alpha\rangle|\beta\rangle
$$

and

$$
F \cdot G \cdot|\alpha\rangle|\beta\rangle=F \cdot|\operatorname{rev}(\alpha)\rangle|\beta \oplus f(\operatorname{rev}(\alpha))\rangle=|\alpha\rangle|\beta \oplus f(\operatorname{rev}(\alpha)) \oplus f(\operatorname{rev}(\alpha))\rangle=|\alpha\rangle|\beta\rangle .
$$

So $G=F^{-1}$, and F is a valid gate by the reasoning above.
B. The intersection problem concerns a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ containing a hidden δ such that $f(\alpha)=\delta \odot \alpha$. The function is either constant, which happens only when $\delta=0 \cdots 0$, or fair, which happens for all other δ. So the intersection problem is: Determine whether $\delta=0 \cdots 0$.
C. In Shor's algorithm, we are trying to find c / d such that

$$
\left|\frac{b}{2^{n}}-\frac{c}{d}\right| \leq \frac{1}{2^{n+1}} .
$$

If there were two such c / d - call them c / d and c^{\prime} / d^{\prime} - then they would satisfy

$$
\left|\frac{c}{d}-\frac{c^{\prime}}{d^{\prime}}\right| \leq\left|\frac{b}{2^{n}}-\frac{c}{d}\right|+\left|\frac{b}{2^{n}}-\frac{c^{\prime}}{d^{\prime}}\right| \leq \frac{2}{2^{n+1}}=\frac{1}{2^{n}} .
$$

But in Homework 15 Problem C we proved that, because $d, d^{\prime}<m$,

$$
\left|\frac{c}{d}-\frac{c^{\prime}}{d^{\prime}}\right|>\frac{1}{2^{n}} .
$$

This contradiction implies that there cannot be two such c / d.
D. First, the assumption that $2^{n} \geq m^{2}$ justifies the assumption that the superposition coming out of F is approximately uniform (although there might be other ways to justify that assumption). Second, it lets us replace the sine of a certain angle with the angle itself. Third, it tells us that $q p / 2^{n} \approx 1$ (just after the second reason). Those three reasons should have appeared in your Homework 15. The fourth reason, which we learned after Homework 15, is that the $c / d \neq c^{\prime} / d^{\prime}$ exercise used in problem C above depends on $\frac{1}{m^{2}} \geq \frac{1}{2^{n}}$.

