
Exam B Solutions CS 358, Winter 2022

A. Briefly, by evaluating S on the standard basis in the usual way, we deduce that

S =

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

.

B. The basic concept is that f : {0, 1}n → {0, 1}m converts into a permutation matrix F such

that F · (|α〉⊗|β〉) = |α〉⊗|β⊕f(α)〉. By comparing this construction to the given F , we deduce

that f : {0, 1}4 → {0, 1}2 is defined by

f(α5, α4, α3, α2) = (α5 � α3, α4 � α2).

In slightly different notation, we could instead write

f(α) = f(α3α2α1α0) = (α3 � α1)(α2 � α0).

(By the way, the meaning of f is that it takes two two-bit strings as input, and returns their

bitwise product as output.)

C. The state passing through F is now a superposition of |β〉 ⊗ |+〉. By a homework problem

that we did on Day 13, such states are eigenvectors of F with eigenvalue 1. So F has no effect; it

might as well not be there. Then the Hadamard layers cancel each other. So the measurement

outputs |0 · · · 0〉 with probability 1. The circuit does nothing of value.

D. The column without a leading 1 corresponds to δ2 in δ = δ8δ7 · · · δ2δ1δ0. So we set δ2 = 1.

Then the other columns force us to choose the other δj so that δ = 011011100.

E. The idea is that the new algorithm runs the old algorithm repeatedly, on k, k2, k4, k8, . . .,

until it gets the information that it needs. Let’s flesh out this idea.

1. The new algorithm runs the old algorithm on k and m to obtain a putative period q.

Either p = q or p is even and q = 1. So it computes kq mod m. If kq ≡ 1 (mod m), then

it must be true that p = q.

2. Otherwise, it runs the old algorithm on k2 and m to obtain a new q. If (k2)q ≡ 1 (mod m),

then k2q ≡ 1 (mod m), and it must be true that p = 2q.

1

Exam B Solutions CS 358, Winter 2022

3. Otherwise, it runs the old algorithm on k4 and m to obtain a new q. If (k4)q ≡ 1 (mod m),

then p = 4q.

4. Otherwise, it continues...

By continuing in this fashion, the new algorithm eventually discovers the period p of k.

To see so, notice that the period p can be written as p = 2`j, where ` ≥ 0 and j is odd. The

new algorithm eventually computes the period of k2
`
, correctly finds that it is j, and correctly

outputs 2`j for the period of k. Is it possible that the algorithm never reaches this step, because

it stops at an earlier step? No. For it could only stop at an earlier k2
`′

with putative period q′ if

it found that (k2
`′

)q
′ ≡ 1 (mod m). But that q′ would have to be 1. So we would have k2

`′ ≡ 1

(mod m), in contradiction of the fact that p = e`j is the least positive power, to which we can

raise k modulo m, to obtain 1.

The new algorithm has to invoke the old algorithm ` times. And ` is (at most) logarithmic in

p, and p ≤ φ(m) < m. So ` is logarithmic in m and hence linear in the number of bits needed to

represent m. So the new algorithm is only slightly slower than the old algorithm. For example,

if the old algorithm is O(n2), where n is the number of bits needed to represent m, then the

new algorithm is O(n3).

2

