After a few runs of Shor's core subroutine with continued fractions, we have a c / d in lowest terms such that $\left|b / 2^{n}-c / d\right| \leq 2^{-(n+1)}$. And we know that $c / d=\ell / p$, and we're trying to find p. If ℓ and p are coprime - and the chances are not bad - then $c=\ell$ and $d=p$ and we're done. But ℓ and p might not be coprime, in which case c and d are merely divisors of ℓ and p respectively. So check that $k^{d} \equiv 1(\bmod m)$. If not, then run the core subroutine again, get a c^{\prime} / d^{\prime}, and compute the least common multiple $\operatorname{lcm}\left(d, d^{\prime}\right)$. This LCM must divide p, and there's a good chance that it equals p. So check that $k^{\operatorname{lcm}\left(d, d^{\prime}\right)} \equiv 1(\bmod m)$. If so, then $p=\operatorname{lcm}\left(d, d^{\prime}\right)$. If not, then start all over again.

There are many ways to tweak the details, but here is one complete, explicit rendering of the period-finding algorithm.

1. Input k and m.
2. Let n be the smallest integer such that $2^{n} \geq m^{2}$.
3. While p is unknown:
(a) Set $d=m$ and $d^{\prime}=m$.
(b) While $d \geq m$:
i. Run the core subroutine to obtain b.
ii. Run continued fractions on $x_{0}=b / 2^{n}$, with larger and larger j, until you obtain c / d such that either $\left|b / 2^{n}-c / d\right| \leq 2^{-(n+1)}$ or $d \geq m$.
(c) If $k^{d} \equiv 1(\bmod m)$, then output $p=d$.
(d) While $d^{\prime} \geq m$:
i. Run the core subroutine to obtain b.
ii. Run continued fractions on $x_{0}=b / 2^{n}$, with larger and larger j, until you obtain c^{\prime} / d^{\prime} such that either $\left|b / 2^{n}-c^{\prime} / d^{\prime}\right| \leq 2^{-(n+1)}$ or $d^{\prime} \geq m$.
(e) If $k^{d^{\prime}} \equiv 1(\bmod m)$, then output $p=d^{\prime}$.
(f) Compute $\operatorname{lcm}\left(d, d^{\prime}\right)=d \cdot d^{\prime} / \operatorname{gcd}\left(d, d^{\prime}\right)$.
(g) If $k^{\operatorname{lcm}\left(d, d^{\prime}\right)} \equiv 1(\bmod m)$, then output $p=\operatorname{lcm}\left(d, d^{\prime}\right)$.

Apparently the probabilities are such that very few iterations should be needed. For example, Nielsen and Chuang (2000, p. 231) argue that $p=\operatorname{lcm}\left(d, d^{\prime}\right)$ with probability at least $1 / 4$.

Now suppose that $m=a b$, where a and b are distinct primes. The RSA cryptosystem is based on this kind of m, and knowing the factors of m breaks the cryptosystem. It turns out that period-finding and factoring are similar enough that the former gives a solution to the latter, as follows.

Pick a random k such that $2 \leq k<m$, and compute $\operatorname{gcd}(k, m)$. If the GCD is not 1 , then congratulations; you just stumbled on a factor of m. So assume that k is coprime to m. Use the period-finding algorithm to find the smallest $p \geq 1$ such that $k^{p} \equiv 1(\bmod m)$.

Now suppose that two pleasant things happen: p is even, and $k^{p / 2} \not \equiv-1(\bmod m)$. Because p is even, $p / 2$ is an integer. We know that $k^{p / 2}-1$ is not divisible by m, because if it were then we'd have $k^{p / 2} \equiv 1(\bmod m)$ and p would not be the period. Meanwhile, to say that $k^{p / 2} \not \equiv-1$ $(\bmod m)$ is to say that $k^{p / 2}+1$ is not divisible by m. So m does not divide $k^{p / 2}-1$ or $k^{p / 2}+1$, but m divides their product $\left(k^{p / 2}-1\right)\left(k^{p / 2}+1\right)=k^{p}-1$. It follows that one of the primes a, b divides $k^{p / 2}-1$ and the other divides $k^{p / 2}+1$. So the GCD of m and either $k^{p / 2}-1$ or $k^{p / 2}+1$ produces either a or b.

If one (or both) of the pleasant things doesn't happen, then the number coming out of the GCD may not be a divisor of m. So proceed under the assumption that both pleasant things happen, but check your answer at the end, and re-run the algorithm if the answer is incorrect. Some basic number theory (Mermin, 2007, Appendix M) shows that the probability of both pleasant things happening is at least $1 / 2$. So we expect to try approximately two k s, and the probabilistic "worst case" isn't bad.

