Section 13.1 \#6, 13, 25-30, 36
Section 13.2 \#26, 36, 42, 47, 53, 59

Here is one last problem. Let $\vec{r}(t)$ be a parametrized curve in \mathbb{R}^{n}.

1. Differentiate $|\vec{r}|^{2}$ in two different ways, to derive an expression for $|\vec{r}|^{\prime}$ in terms of $\left|\vec{r}^{\prime}\right|$ and the cosine of a certain angle.
2. Use that expression to give an explicit example, for any $n \geq 2$ you like, where $|\vec{r}|^{\prime} \neq\left|\vec{r}^{\prime}\right|$.
(I hope that, after doing this problem, you will have a clear vision of the distinction between $|\vec{r}|^{\prime}$ and $\left|\vec{r}^{\prime}\right|$, and that you will never be tempted to conflate them.)
