1. Section 13.3 #6. (If you feel that you need more practice computing arc length, then do more examples from the book. The next one I would try is #15.)

2. Section 13.4 #34. (If this problem seems daunting, then you might consider doing #33 first. And the Problem A on our curveProblemsMore.pdf handout is a slightly gentler version of #33. Either way, you are expected to hand in just your response to #34.)

- 3. Problem D from the curveProblemsMore.pdf handout on our course web site.
- 4. Problems E and F from that same handout (which continue Problem D).

For this last problem, recall from an earlier class that a particle moving with velocity \vec{v} in a uniform magnetic field \vec{B} experiences force $\vec{F} = c\vec{v} \times \vec{B}$, where $c \neq 0$ is some constant of proportionality (which depends on the magnetic properties of the particle). You might also know that $\vec{F} = m\vec{a}$, where m > 0 is the particle's constant mass and \vec{a} is the particle's acceleration. Let $\vec{x} : \mathbb{R} \to \mathbb{R}^3$ be the particle's trajectory through space. In other words, its position at time t is $\vec{x}(t)$.

5.A. Summarize this whole situation as a differential equation in \vec{x} . (A differential equation is an equation involving an unknown function and its derivatives — in this case, one or more of \vec{x} , \vec{x}' , \vec{x}'' , etc.)

5.B. Now focus on the case where $\vec{B} = \langle 0, 0, 1 \rangle$. Write the differential equation explicitly in terms of x_1, x_2, x_3 , and their derivatives.

5.C. Continuing in the case where $\vec{B} = \langle 0, 0, 1 \rangle$, find a solution \vec{x} . (Hint: It's probably easier to figure out what \vec{x}' is, and then to figure out \vec{x} from that. Also, if you're lost, try combinations of sines and cosines.)