1. Section $13.3 \# 6$. (If you feel that you need more practice computing arc length, then do more examples from the book. The next one I would try is \#15.)
2. Section $13.4 \# 34$. (If this problem seems daunting, then you might consider doing \#33 first. And the Problem A on our curveProblemsMore.pdf handout is a slightly gentler version of $\# 33$. Either way, you are expected to hand in just your response to \#34.)
3. Problem D from the curveProblemsMore.pdf handout on our course web site.
4. Problems E and F from that same handout (which continue Problem D).

For this last problem, recall from an earlier class that a particle moving with velocity \vec{v} in a uniform magnetic field \vec{B} experiences force $\vec{F}=c \vec{v} \times \vec{B}$, where $c \neq 0$ is some constant of proportionality (which depends on the magnetic properties of the particle). You might also know that $\vec{F}=m \vec{a}$, where $m>0$ is the particle's constant mass and \vec{a} is the particle's acceleration. Let $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the particle's trajectory through space. In other words, its position at time t is $\vec{x}(t)$.
5.A. Summarize this whole situation as a differential equation in \vec{x}. (A differential equation is an equation involving an unknown function and its derivatives - in this case, one or more of $\vec{x}, \vec{x}^{\prime}, \vec{x}^{\prime \prime}$, etc.)
5.B. Now focus on the case where $\vec{B}=\langle 0,0,1\rangle$. Write the differential equation explicitly in terms of x_{1}, x_{2}, x_{3}, and their derivatives.
5.C. Continuing in the case where $\vec{B}=\langle 0,0,1\rangle$, find a solution \vec{x}. (Hint: It's probably easier to figure out what \vec{x}^{\prime} is, and then to figure out \vec{x} from that. Also, if you're lost, try combinations of sines and cosines.)

