
Exam C Solutions Math 211, Spring 2017, Carleton College

A1. Notice that ~n × ~m is perpendicular to both ~n and ~m, and therefore lies in both planes,

and therefore lies in the line where they intersect. Therefore the line can be parametrized as

~r(t) = ~s+ t(~n× ~m).

A2. It will not work when ~n and ~m are scalar multiples of each other. For then the cross

product will be ~0 and the parametrized “line” will not be a line. Geometrically, this happens

exactly when P and Q are identical.

B1. The potential function is f = xeyz + c, where c is an arbitrary constant. [Check that
∂f
∂x = F1, etc.]

B2. By the fundamental theorem of calculus for line integrals,∫
C

~F · d~s =

∫
C

(∇f) · d~s = f(~r(1))− f(~r(0)) = f(cos 1, 1, log 2)− f(1, 0, 0) = 2(cos 1)− 1.

C1. [By the way, this is Section 14.7 Exercise 12.] The gradient of f is ∇f = 〈3x2−6, 4y3−4y〉.
It is never undefined. It equals ~0 when

x2 = 2, y3 = y.

The solutions are x = ±
√

2 and y = −1, 0, 1. So there are six critical points.

C2. The second derivatives are

fxx = 6x, fyy = 12y2 − 4, fxy = fyx = 0.

The discriminant is

fxxfyy − fxyfyx = 6x(12y2 − 4).

At the critical point (x, y) = (
√

2, 0), the discriminant is negative, so the point is a saddle point.

D1. [By the way, this is Section 17.2 Exercise 10.] We compute

curl ~G =


∂
∂x
∂
∂y
∂
∂z

×


2y

ez

− arctanx

 =


0− ez

0−− 1
1+x2

0− 2

 = ~F .

D2. By Stokes’ theorem, ∫∫
S

~F · d~S =

∫∫
S

(curl ~G) · d~S =

∫
∂S

~G · d~s.
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Parametrize ∂S by ~r(t) = (2 cos t, 2 sin t, 0), for 0 ≤ t ≤ 2π. Its orientation is compatible with

the upward-pointing normals on S. Then∫
∂S

~G · d~s =

∫ 2π

0

~G(~r(t)) · ~r ′(t) dt

=

∫ 2π

0
〈4 sin t, e0,− arctan(2 cos t)〉 · 〈−2 sin t, 2 cos t, 0〉 dt

=

∫ 2π

0
−8 sin2 t+ 2 cos t dt

= [−4t+ 2 sin(2t) + 2 sin t]2π0

= (−8π + 0 + 0)− (0 + 0 + 0)

= −8π.

E1. [By the way, this is Section 15.3 Exercise 15. I’ll omit the drawing in these typed solutions.]

E2. Based on the drawing above, we compute the iterated integral∫∫∫
W
f(x, y, z) dV =

∫ 1

0

∫ x

0

∫ √9−x2−y2

0
z dz dy dx

=

∫ 1

0

∫ x

0

[
z2/2

]√9−x2−y2
0

dy dx

=
1

2

∫ 1

0

∫ x

0
9− x2 − y2 dy dx

=
1

2

∫ 1

0

[
9y − x2y − y3/3

]x
0
dx

=
1

2

∫ 1

0
9x− 4x3/3 dx

=
1

2
[9x2/2− x4/3]10

= 9/4− 1/6

= 25/12.

F. [By the way, this is Section 14.8 Example 1.] We wish to optimize f(x, y) = 2x+ 5y subject

to g(x, y) =
(
x
4

)2
+
(y
3

)2
= 1. Proceeding by Lagrange multipliers, we compute ∇f = 〈2, 5〉 and

∇g = 〈x/8, 2y/9〉. We arrive at a system of three equations in three unknowns:

2 = λx/8,

5 = 2λy/9,

1 =
(x

4

)2
+
(y

3

)2
.
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Solving for λ in the first two equations yields λ = 16/x = 45/(2y), which implies that y = 45x/32.

Plugging this equation into the constraint produces 172x2 = 322, which implies that

x = ±32

17
,

which implies that

y =
45

32
x = ±45

17
.

So there are two points of concern: one with x and y positive, and the other with x and y

negative. Because f(x, y) increases with both x and y, it is greater at the positive solution than

at the negative solution. Hence the former is the maximum (with value (2 · 32 + 5 · 45)/17) and

the latter the minimum (with opposite value).

G. [By the way, I often mention this concept and prove this result during the course, but this

term I did not.] We just compute it out:

div(grad f) =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈fx, fy, fz〉 = fxx + fyy + fzz = ∆f.

H. [By the way, this was one of the study questions mentioned on the last day of class.] Because

f is a scalar field, ~F is a vector field, and div(f ~F ) is a scalar field, the rule is probably div(f ~F ) =

∇f · ~F + fdiv ~F .
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