A1. Notice that $\vec{n} \times \vec{m}$ is perpendicular to both \vec{n} and \vec{m}, and therefore lies in both planes, and therefore lies in the line where they intersect. Therefore the line can be parametrized as $\vec{r}(t)=\vec{s}+t(\vec{n} \times \vec{m})$.

A2. It will not work when \vec{n} and \vec{m} are scalar multiples of each other. For then the cross product will be $\overrightarrow{0}$ and the parametrized "line" will not be a line. Geometrically, this happens exactly when P and Q are identical.

B1. The potential function is $f=x e^{y z}+c$, where c is an arbitrary constant. [Check that $\frac{\partial f}{\partial x}=F_{1}$, etc.]

B2. By the fundamental theorem of calculus for line integrals,

$$
\int_{C} \vec{F} \cdot d \vec{s}=\int_{C}(\nabla f) \cdot d \vec{s}=f(\vec{r}(1))-f(\vec{r}(0))=f(\cos 1,1, \log 2)-f(1,0,0)=2(\cos 1)-1 .
$$

C1. [By the way, this is Section 14.7 Exercise 12.] The gradient of f is $\nabla f=\left\langle 3 x^{2}-6,4 y^{3}-4 y\right\rangle$. It is never undefined. It equals $\overrightarrow{0}$ when

$$
x^{2}=2, \quad y^{3}=y
$$

The solutions are $x= \pm \sqrt{2}$ and $y=-1,0,1$. So there are six critical points.
C2. The second derivatives are

$$
f_{x x}=6 x, \quad f_{y y}=12 y^{2}-4, \quad f_{x y}=f_{y x}=0 .
$$

The discriminant is

$$
f_{x x} f_{y y}-f_{x y} f_{y x}=6 x\left(12 y^{2}-4\right) .
$$

At the critical point $(x, y)=(\sqrt{2}, 0)$, the discriminant is negative, so the point is a saddle point.
D1. [By the way, this is Section 17.2 Exercise 10.] We compute

$$
\operatorname{curl} \vec{G}=\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right] \times\left[\begin{array}{c}
2 y \\
e^{z} \\
-\arctan x
\end{array}\right]=\left[\begin{array}{c}
0-e^{z} \\
0--\frac{1}{1+x^{2}} \\
0-2
\end{array}\right]=\vec{F} .
$$

D2. By Stokes' theorem,

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S}(\operatorname{curl} \vec{G}) \cdot d \vec{S}=\int_{\partial S} \vec{G} \cdot d \vec{s} .
$$

Parametrize ∂S by $\vec{r}(t)=(2 \cos t, 2 \sin t, 0)$, for $0 \leq t \leq 2 \pi$. Its orientation is compatible with the upward-pointing normals on S. Then

$$
\begin{aligned}
\int_{\partial S} \vec{G} \cdot d \vec{s} & =\int_{0}^{2 \pi} \vec{G}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\left\langle 4 \sin t, e^{0},-\arctan (2 \cos t)\right\rangle \cdot\langle-2 \sin t, 2 \cos t, 0\rangle d t \\
& =\int_{0}^{2 \pi}-8 \sin ^{2} t+2 \cos t d t \\
& =[-4 t+2 \sin (2 t)+2 \sin t]_{0}^{2 \pi} \\
& =(-8 \pi+0+0)-(0+0+0) \\
& =-8 \pi
\end{aligned}
$$

E1. [By the way, this is Section 15.3 Exercise 15. I'll omit the drawing in these typed solutions.]
E2. Based on the drawing above, we compute the iterated integral

$$
\begin{aligned}
\iiint_{W} f(x, y, z) d V & =\int_{0}^{1} \int_{0}^{x} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z d z d y d x \\
& =\int_{0}^{1} \int_{0}^{x}\left[z^{2} / 2\right]_{0}^{\sqrt{9-x^{2}-y^{2}}} d y d x \\
& =\frac{1}{2} \int_{0}^{1} \int_{0}^{x} 9-x^{2}-y^{2} d y d x \\
& =\frac{1}{2} \int_{0}^{1}\left[9 y-x^{2} y-y^{3} / 3\right]_{0}^{x} d x \\
& =\frac{1}{2} \int_{0}^{1} 9 x-4 x^{3} / 3 d x \\
& =\frac{1}{2}\left[9 x^{2} / 2-x^{4} / 3\right]_{0}^{1} \\
& =9 / 4-1 / 6 \\
& =25 / 12
\end{aligned}
$$

F. [By the way, this is Section 14.8 Example 1.] We wish to optimize $f(x, y)=2 x+5 y$ subject to $g(x, y)=\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$. Proceeding by Lagrange multipliers, we compute $\nabla f=\langle 2,5\rangle$ and $\nabla g=\langle x / 8,2 y / 9\rangle$. We arrive at a system of three equations in three unknowns:

$$
\begin{aligned}
2 & =\lambda x / 8 \\
5 & =2 \lambda y / 9 \\
1 & =\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}
\end{aligned}
$$

Solving for λ in the first two equations yields $\lambda=16 / x=45 /(2 y)$, which implies that $y=45 x / 32$. Plugging this equation into the constraint produces $17^{2} x^{2}=32^{2}$, which implies that

$$
x= \pm \frac{32}{17}
$$

which implies that

$$
y=\frac{45}{32} x= \pm \frac{45}{17} .
$$

So there are two points of concern: one with x and y positive, and the other with x and y negative. Because $f(x, y)$ increases with both x and y, it is greater at the positive solution than at the negative solution. Hence the former is the maximum (with value $(2 \cdot 32+5 \cdot 45) / 17$) and the latter the minimum (with opposite value).
G. [By the way, I often mention this concept and prove this result during the course, but this term I did not.] We just compute it out:

$$
\operatorname{div}(\operatorname{grad} f)=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle f_{x}, f_{y}, f_{z}\right\rangle=f_{x x}+f_{y y}+f_{z z}=\Delta f .
$$

H. [By the way, this was one of the study questions mentioned on the last day of class.] Because f is a scalar field, \vec{F} is a vector field, and $\operatorname{div}(f \vec{F})$ is a scalar field, the rule is probably $\operatorname{div}(f \vec{F})=$ $\nabla f \cdot \vec{F}+f \operatorname{div} \vec{F}$.

