A.

$$
\begin{aligned}
& \vec{v}+\vec{w}=\langle 2,4,0\rangle . \\
& -5 \vec{v}=\langle-5,-15,10\rangle . \\
& \vec{v} \cdot \vec{w}=1 \cdot 1+3 \cdot 1+(-2) \cdot 2=0 . \\
& \operatorname{proj}_{\vec{w}} \vec{v}=\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}=\frac{0}{6}\langle 1,1,2\rangle=\overrightarrow{0} . \\
& \vec{v} \times \vec{w}=\langle 3 \cdot 2-(-2) \cdot 1,(-2) \cdot 1-1 \cdot 2,1 \cdot 1-3 \cdot 1\rangle=\langle 8,-4,-2\rangle .
\end{aligned}
$$

B. In Cartesian coordinates, the line is $x+y=1$. In polar coordinates, the line is therefore $r \cos \theta+r \sin \theta=1$. Solving for r, we obtain

$$
r=\frac{1}{\cos \theta+\sin \theta} .
$$

C1. Draw $\operatorname{proj}_{\vec{n}} \vec{\ell}$ in the picture. Also let $\vec{v}=\vec{\ell}-\operatorname{proj}_{\vec{n}} \vec{\ell}$, and draw it in the picture. Also draw $-\vec{v}$. Then

$$
\begin{aligned}
\vec{r} & =\operatorname{proj}_{\vec{n}} \vec{\ell}+-\vec{v} \\
& =\operatorname{proj}_{\vec{n}} \vec{\ell}+\operatorname{proj}_{\vec{n}} \vec{\ell}-\vec{\ell} \\
& =2 \frac{\vec{n} \cdot \vec{\ell}}{\vec{n} \cdot \vec{n}} \vec{n}-\vec{\ell} \\
& =2(\vec{n} \cdot \vec{\ell}) \vec{n}-\vec{\ell} .
\end{aligned}
$$

C2. Well,

$$
\begin{aligned}
(2(\vec{n} \cdot \vec{\ell}) \vec{n}-\vec{\ell}) \cdot(2(\vec{n} \cdot \vec{\ell}) \vec{n}-\vec{\ell}) & =4(\vec{n} \cdot \vec{\ell})^{2} \vec{n} \cdot \vec{n}-4(\vec{n} \cdot \vec{\ell} \vec{n} \cdot \vec{\ell}+\vec{\ell} \cdot \vec{\ell} \\
& =4(\vec{n} \cdot \vec{\ell})^{2}-4(\vec{n} \cdot \vec{\ell})^{2}+\vec{\ell} \cdot \vec{\ell} \\
& =\vec{\ell} \cdot \vec{\ell} .
\end{aligned}
$$

Therefore the squared length of $2(\vec{n} \cdot \vec{\ell}) \vec{n}-\vec{\ell}$ equals the squared length of $\vec{\ell}$, and so their lengths are equal. That fact agrees with C1; reflecting a vector across another vector should produce a vector of the same length.
D. From the equations we can read off normal vectors: $\vec{n}=\langle a, b, c\rangle$ for the first plane and $\vec{m}=\langle e, f, g\rangle$ for the second. Consider the vector $\vec{d}=\vec{n} \times \vec{m}$. This vector is perpendicular to \vec{n} and hence lies in the first plane. Similarly, it is perpendicular to \vec{m} and lies in the second plane. Because it lies in both planes, it must lie in the line of intersection. So

$$
\vec{x}(t)=\vec{p}+t \vec{d}=\vec{p}+t\langle a, b, c\rangle \times\langle e, f, g\rangle
$$

is a parametrization of that line.
E. Acceleration is the second derivative of position:

$$
\begin{aligned}
\vec{x}(t) & =\left\langle e^{2 t}, \sqrt{t}, t \cos (t+\pi)\right\rangle \\
\Rightarrow \quad \vec{x}^{\prime}(t) & =\left\langle 2 e^{2 t}, \frac{1}{2} t^{-1 / 2}, \cos (t+\pi)-t \sin (t+\pi)\right\rangle \\
\Rightarrow \quad \vec{x}^{\prime \prime}(t) & =\left\langle 4 e^{2 t},-\frac{1}{4} t^{-3 / 2},-2 \sin (t+\pi)-t \cos (t+\pi)\right\rangle .
\end{aligned}
$$

The point in question is where $t=0$. So the desired acceleration is $\vec{x}^{\prime \prime}(0)=\langle 4$, undefined, 0$\rangle$. [Sorry about the undefined part. It was not my intention to have the acceleration be undefined. I graded generously on that second component.]

F1. Acceleration is the second derivative of position:

$$
\vec{x}^{\prime \prime}(0)=\frac{-G M}{|\vec{x}(0)|^{3}} \vec{x}(0)=\frac{-G M}{|\vec{p}|^{3}} \vec{p} .
$$

F2. If the acceleration \vec{a} is constant, then the velocity \vec{v} is

$$
\vec{v}=\int \vec{a} d t=t \vec{a}+\vec{c}
$$

for some \vec{c}. Plugging in $t=0$, we find that $\vec{c}=\vec{d}$. So $\vec{v}=t \vec{a}+\vec{d}$. Then the position is

$$
\vec{x}=\int \vec{v} d t=\int t \vec{a}+\vec{d} d t=\frac{1}{2} t^{2} \vec{a}+t \vec{d}+\vec{c},
$$

where \vec{c} is now \vec{p}. Plugging in our answer for \vec{a} from F1, we obtain

$$
\vec{x}=-\frac{G M}{2|\vec{p}|^{3}} t^{2} \vec{p}+t \vec{d}+\vec{p} .
$$

