A.A. We compute

$$
\partial f / \partial x=2 x y-3 z, \quad \partial f / \partial y=x^{2}, \quad \partial f / \partial z=-3 x+4 z^{3} .
$$

A.B. The tangent plane has equation $\vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{p}$, where $\vec{p}=\langle 2,1,1\rangle$ is a point on the plane and \vec{n} is a normal vector. Because gradients are perpendicular to level sets, we can use $\vec{n}=\nabla f(2,1,1)=\langle 1,4,-2\rangle$. So the plane is $x+4 y-2 z=4$.
[Some students tried another approach: Solving for z as a function $z=g(x, y)$ whose graph is the surface, and then using the linear approximation to g at $(x, y)=(2,1)$ to get the tangent plane. In principle, this approach should work. In practice, no one could pull it off.]
A.C. We can parametrize the line as $\vec{x}(t)=\vec{p}+t \vec{d}$, where $\vec{d}=\vec{n}$. So the line is $\vec{x}(t)=$ $\langle 2,1,1\rangle+t\langle 1,4,-2\rangle$.
B. We want the directional derivative of f in the direction

$$
\vec{v}=\langle\cos 3 \pi / 4, \sin 3 \pi / 4\rangle=\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle .
$$

The gradient of f is $\nabla f=\left\langle e^{-x^{2}-y^{2}}(-2 x), e^{-x^{2}-y^{2}}(-2 y)\right\rangle$. So the directional derivative is

$$
\nabla f(1,0) \cdot \vec{v}=\left\langle-2 e^{-1}, 0\right\rangle \cdot\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle=\sqrt{2} / e
$$

C. [It is recommended that you first diagram how the variables depend on each other. Your diagram should show that p depends on T and V_{m}, which depend on time t.] The chain rule says that

$$
\frac{d p}{d t}=\frac{\partial p}{\partial T} \frac{d T}{d t}+\frac{\partial p}{\partial V_{m}} \frac{d V_{m}}{d t}
$$

We compute

$$
\begin{aligned}
\frac{\partial p}{\partial T} & =\frac{R}{V_{m}-b}-\frac{a}{V_{m}\left(V_{m}+b\right)}\left(-\frac{1}{2}\right) T^{-3 / 2} \\
\frac{\partial p}{\partial V_{m}} & =R T(-1)\left(V_{m}-b\right)^{-2}-\frac{a}{\sqrt{T}}(-1)\left(V_{m}^{2}+V_{m} b\right)^{-2}\left(2 V_{m}+b\right)
\end{aligned}
$$

At the moment of interest, we have

$$
\begin{aligned}
\frac{\partial p}{\partial T} & =\frac{R}{1-b}+\frac{a}{16(1+b)} \\
\frac{\partial p}{\partial V_{m}} & =-4 R(1-b)^{-2}+\frac{a}{2}(1+b)^{-2}(2+b) \\
\frac{d p}{d t} & =0.3 \\
\frac{d T}{d t} & =0.1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{d V_{m}}{d t} & =\frac{\frac{d p}{d t}-\frac{\partial p}{\partial T} \frac{d T}{d t}}{\frac{\partial p}{\partial V_{m}}} \\
& =\frac{0.3-0.1\left(\frac{R}{1-b}+\frac{a}{16(1+b)}\right)}{-4 R(1-b)^{-2}+\frac{a}{2}(1+b)^{-2}(2+b)} .
\end{aligned}
$$

[By the way, if you are unfamiliar with the Redlich-Kwong equation of state, try setting $a=b=0$ and expressing V_{m} as V / n. Then you might get an equation that you've seen in a chemistry class.]
D. We want to maximize $f(a, t)=(a-9.8) t^{2} / 2$ subject to the constraint that $g(a, t)=a^{2} t=$ 100,000 . We proceed by Lagrange multipliers. First,

$$
\nabla g(a, t)=\left\langle 2 a t, a^{2}\right\rangle
$$

So $\nabla g=\overrightarrow{0}$ only where $a=0$, which does not satisfy the constraint $g=100,000$. Thus far we have detected no points of interest. Next,

$$
\nabla f(a, t)=\left\langle t^{2} / 2,(a-9.8) t\right\rangle .
$$

We need to solve this system of three equations in three variables a, t, λ :

$$
\begin{aligned}
t^{2} / 2 & =\lambda 2 a t, \\
(a-9.8) t & =\lambda a^{2}, \\
a^{2} t & =100,000
\end{aligned}
$$

The third equation requires that a and t be non-zero. Then the first equation implies that $\lambda=t /(4 a)$. Plugging that expression for λ into the second equation, we obtain $a-9.8=a / 4$, which implies that $a=4(9.8) / 3$.

We have found just one point of interest, where $a=4(9.8) / 3$ (and t and λ have some specific values that we could compute if we had to). Based on the meaning of the problem, f must have a maximum at this point, but let's check that intuition. At the point of interest, $a \approx 13$, and the third equation tells us that

$$
t=\frac{100,000}{a^{2}}>\frac{100,000}{200}=500,
$$

so

$$
f(a, t)>(13-10)(500)^{2} / 2>(100)^{2}=10,000
$$

In comparison, the point $(1,100,000)$ satisfies the constraint with $f(1,100,000)<0$, and the point $(100,10)$ satisfies the constraint with

$$
f(100,10)=(100-9.8)(50) \approx(90)(50)=4,500
$$

So f decreases away from $a=4(9.8) / 3$, and the altitude is maximized there.
[Because of an ...irregularity, the test time was cut from 60 minutes to 50 minutes, and students did not complete problem E. However, here are the answers for posterity.]
E.A. TRUE. [This statement is Clairaut's theorem.]
E.B. FALSE. [The gradient could be undefined. Consider for example $f(x, y)=\sqrt{x^{2}+y^{2}}$.]
E.C. FALSE. [We did a counter-example in class, which was shaped like the roof of a house.]
E.D. TRUE. [This statement is the definition of continuity.]
E.E. FALSE. [For example, $x^{2}-y^{2}$ has a saddle at $\overrightarrow{0}$.]
E.F. FALSE. [The max could occur at a boundary point.]

