A.A. We compute

$$\partial f/\partial x = 2xy - 3z, \quad \partial f/\partial y = x^2, \quad \partial f/\partial z = -3x + 4z^3.$$

A.B. The tangent plane has equation $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$, where $\vec{p} = \langle 2, 1, 1 \rangle$ is a point on the plane and \vec{n} is a normal vector. Because gradients are perpendicular to level sets, we can use $\vec{n} = \nabla f(2, 1, 1) = \langle 1, 4, -2 \rangle$. So the plane is x + 4y - 2z = 4.

[Some students tried another approach: Solving for z as a function z = g(x, y) whose graph is the surface, and then using the linear approximation to g at (x, y) = (2, 1) to get the tangent plane. In principle, this approach should work. In practice, no one could pull it off.]

A.C. We can parametrize the line as $\vec{x}(t) = \vec{p} + t\vec{d}$, where $\vec{d} = \vec{n}$. So the line is $\vec{x}(t) = \langle 2, 1, 1 \rangle + t \langle 1, 4, -2 \rangle$.

B. We want the directional derivative of f in the direction

$$\vec{v} = \langle \cos 3\pi/4, \sin 3\pi/4 \rangle = \langle -1/\sqrt{2}, 1/\sqrt{2} \rangle.$$

The gradient of f is $\nabla f = \langle e^{-x^2-y^2}(-2x), e^{-x^2-y^2}(-2y) \rangle$. So the directional derivative is

$$\nabla f(1,0) \cdot \vec{v} = \langle -2e^{-1}, 0 \rangle \cdot \langle -1/\sqrt{2}, 1/\sqrt{2} \rangle = \sqrt{2}/e.$$

C. [It is recommended that you first diagram how the variables depend on each other. Your diagram should show that p depends on T and V_m , which depend on time t.] The chain rule says that

$$\frac{dp}{dt} = \frac{\partial p}{\partial T}\frac{dT}{dt} + \frac{\partial p}{\partial V_m}\frac{dV_m}{dt}.$$

We compute

$$\frac{\partial p}{\partial T} = \frac{R}{V_m - b} - \frac{a}{V_m (V_m + b)} \left(-\frac{1}{2}\right) T^{-3/2},$$

$$\frac{\partial p}{\partial V_m} = RT(-1)(V_m - b)^{-2} - \frac{a}{\sqrt{T}}(-1)(V_m^2 + V_m b)^{-2}(2V_m + b).$$

At the moment of interest, we have

$$\begin{aligned} \frac{\partial p}{\partial T} &= \frac{R}{1-b} + \frac{a}{16(1+b)}, \\ \frac{\partial p}{\partial V_m} &= -4R(1-b)^{-2} + \frac{a}{2}(1+b)^{-2}(2+b), \\ \frac{dp}{dt} &= 0.3, \\ \frac{dT}{dt} &= 0.1. \end{aligned}$$

Therefore

$$\frac{dV_m}{dt} = \frac{\frac{dp}{dt} - \frac{\partial p}{\partial T}\frac{dT}{dt}}{\frac{\partial p}{\partial V_m}}$$
$$= \frac{0.3 - 0.1\left(\frac{R}{1-b} + \frac{a}{16(1+b)}\right)}{-4R(1-b)^{-2} + \frac{a}{2}(1+b)^{-2}(2+b)}.$$

[By the way, if you are unfamiliar with the Redlich-Kwong equation of state, try setting a = b = 0 and expressing V_m as V/n. Then you might get an equation that you've seen in a chemistry class.]

D. We want to maximize $f(a,t) = (a - 9.8)t^2/2$ subject to the constraint that $g(a,t) = a^2t = 100,000$. We proceed by Lagrange multipliers. First,

$$\nabla g(a,t) = \langle 2at, a^2 \rangle.$$

So $\nabla g = \vec{0}$ only where a = 0, which does not satisfy the constraint g = 100,000. Thus far we have detected no points of interest. Next,

$$\nabla f(a,t) = \langle t^2/2, (a-9.8)t \rangle.$$

We need to solve this system of three equations in three variables a, t, λ :

$$t^{2}/2 = \lambda 2at,$$

$$(a - 9.8)t = \lambda a^{2},$$

$$a^{2}t = 100.000.$$

The third equation requires that a and t be non-zero. Then the first equation implies that $\lambda = t/(4a)$. Plugging that expression for λ into the second equation, we obtain a - 9.8 = a/4, which implies that a = 4(9.8)/3.

We have found just one point of interest, where a = 4(9.8)/3 (and t and λ have some specific values that we could compute if we had to). Based on the meaning of the problem, f must have a maximum at this point, but let's check that intuition. At the point of interest, $a \approx 13$, and the third equation tells us that

$$t = \frac{100,000}{a^2} > \frac{100,000}{200} = 500,$$

 \mathbf{SO}

$$f(a,t) > (13-10)(500)^2/2 > (100)^2 = 10,000.$$

In comparison, the point (1, 100, 000) satisfies the constraint with f(1, 100, 000) < 0, and the point (100, 10) satisfies the constraint with

$$f(100, 10) = (100 - 9.8)(50) \approx (90)(50) = 4,500.$$

So f decreases away from a = 4(9.8)/3, and the altitude is maximized there.

[Because of an ... irregularity, the test time was cut from 60 minutes to 50 minutes, and students did not complete problem E. However, here are the answers for posterity.]

E.A. TRUE. [This statement is Clairaut's theorem.]

- **E.B.** FALSE. [The gradient could be undefined. Consider for example $f(x, y) = \sqrt{x^2 + y^2}$.]
- E.C. FALSE. [We did a counter-example in class, which was shaped like the roof of a house.]

E.D. TRUE. [This statement is the definition of continuity.]

- **E.E.** FALSE. [For example, $x^2 y^2$ has a saddle at $\vec{0}$.]
- E.F. FALSE. [The max could occur at a boundary point.]