A.A. Because the region and the integrand are both rotationally symmetric about the origin, it makes sense to proceed in spherical coordinates. There, the surfaces are $\rho=A$ and $\rho=B$, and the integrand is $f=\rho^{-6}$. So the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{A}^{B}\left(\rho^{2}\right)^{-3} \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{A}^{B} \rho^{-4} \sin \phi d \rho d \phi d \theta
$$

A.B. Fortunately, the integral separates as

$$
\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{\pi} \sin \phi d \phi \cdot \int_{A}^{B} \rho^{-4} d \rho=2 \pi \cdot 2 \cdot\left[-\frac{1}{3} \rho^{-3}\right]_{A}^{B}=-\frac{4 \pi}{3}\left(B^{-3}-A^{-3}\right)=\frac{4 \pi}{3}\left(A^{-3}-B^{-3}\right) .
$$

B. [I'll omit all pictures in these typed solutions, although I used pictures to figure out my solution, and you should too.] The energy recovered equals the work needed to raise the water from $z=0$. That work is the integral, over the region occupied by the water, of $\delta g z$, where $\delta=1000$ and $g=9.8$. So we obtain the integral

$$
\int_{0}^{40 h} \int_{x / 40}^{h} \int_{x / 20-2 z}^{2 z-x / 20} 9800 z d y d z d x
$$

[And here's another solution, in the $d y d x d z$ order:

$$
\int_{0}^{h} \int_{0}^{40 z} \int_{x / 20-2 z}^{2 z-x / 20} 9800 z d y d x d z
$$

If you use one of the four other orders, then you might have to break the integral into two integrals, which is generally undesirable.]
C.A. This problem seems simplest in polar coordinates. The bounds amount to $0 \leq \theta \leq \pi / 2$ and $r \geq 1$, and the $x^{2}+y^{2}$ in the integrand turns into r^{2}. So the desired integral is

$$
\int_{0}^{\pi / 2} \int_{1}^{\infty} \frac{1}{2 \pi \sigma^{2}} e^{-r^{2} /\left(2 \sigma^{2}\right)} r d r d \theta
$$

C.B. Fortunately, the integral separates. The $d \theta$ integral is easy. For the $d r$ integral, I would use anti-differentiation by substitution with $u=-r^{2} /\left(2 \sigma^{2}\right)$. This works well with the other r in the integrand. I would need to take a limit as the upper integration bound went to ∞.
D. We need a 2D integral, and I see no reason to switch to polar coordinates, so I stay in rectangular coordinates. Because of how the boundary curves are arranged, I need to break the integral into three pieces:

$$
\int_{0.16}^{0.27} \int_{2.5 / x}^{(10.0 / x)^{2 / 3}} 1 d y d x+\int_{0.27}^{0.37} \int_{2.5 / x}^{3.0 / x} 1 d y d x+\int_{0.37}^{0.64} \int_{(6.5 / x)^{2 / 3}}^{3.0 / x} 1 d y d x
$$

[This problem is intended to be the easiest problem on the exam. By the way, this problem is similar to Section $15.9 \# 24$. We did not study that section of the textbook. If we had, then we would have learned an alternative approach to computing such an integral.]
E.A. Let's place cylindrical coordinates so that the origin is at the center of the GPGP, on the water's surface, with $d=r$ and $D=-z$. The integral is

$$
\int_{0}^{2 \pi} \int_{0}^{700} \int_{-5}^{0} C r^{-1}(-z)^{-1 / 2} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{700} \int_{-5}^{0} 5084(-z)^{-1 / 2} d z d r d \theta
$$

E.B. Fortunately, the integral separates as

$$
5084 \int_{0}^{2 \pi} d \theta \cdot \int_{0}^{700} d r \cdot \int_{-5}^{0}(-z)^{-1 / 2} d z=5084 \cdot 2 \pi \cdot 700 \cdot\left[-2(-z)^{1 / 2}\right]_{-5}^{0}=5084 \cdot 700 \cdot 4 \pi \cdot \sqrt{5} .
$$

[This answer is very close to $10^{8} \mathrm{~kg}$, which matches estimates of plastic mass that I found online while researching this problem. I rigged C to make this happen. Similarly, the 700 was based on estimates of the GPGP's area, and the 5 was based on estimates of the abyssal plain's depth. The density function was further inspired by vague observations I read, that plastic density is higher near the center and near the surface, but the specific form of the density function is my own invention and might not be realistic. Also, I excluded the plastic that's accumulating on the sea floor, because I lacked information about it.]
[Bonus learning opportunity: Write a problem about the mass of plastic on the sea floor. What might the integrand be? What kind of integration would appear?]

