
More Paramtrized Curve Problems Math 211, Fall 2023

This first set of problems is based on Section 13.4 #33. A river is 40 m wide and

flowing north. A person in a boat on the west bank wants to cross to the east bank. They

can row at 5 m/s. We’ve done problems like this one already in this course. What’s new

here is that the speed of the current varies across space. Near the banks the speed is 0.

At the center of the river, the speed is 3 m/s.

A. Let x be a coordinate running from x = 0 at the west bank to x = 40 at the east

bank. Come up with a quadratic function (a parabola) that describes the speed of the

current at x, for all x in the interval [0, 40].

B. If the rower rows due east, then how long will they take to cross the river, and how

far downstream will they land?

C. Actually, the rower doesn’t want to land downstream or upstream. They want to

land directly across the river from where they started. On what heading θ should they

row, to make this happen?

For this next set of problems, imagine a three-dimensional coordinate system centered

on a star of mass M . A planet of mass m, which is much less than M , is orbiting the

star. For simplicity, assume that the star is stationary. Let x⃗ be the planet’s trajectory.

Newton’s law of gravitation says that the force F⃗ of gravity on the planet is of magnitude

GMm/r2 toward the star, where G is a positive constant and r is the distance between

the star and the planet. Newton’s second law of motion says that the acceleration a⃗ of

the planet is related to the force by F⃗ = ma⃗.

D. Prove that |x⃗|3 x⃗ ′′ = −GMx⃗. (This equation is a differential equation — an

equation involving an unknown function x⃗ and its derivatives x⃗′, x⃗′′, etc.)

E. For the differential equation given in problem D, is there a solution of the form

x⃗(t) = ⟨R cosωt,R sinωt, 0⟩?

If so, how do R and ω relate to the information given in the problem?

F. A year is the amount of time needed for the planet to revolve once about the star.

Based on your answer to problem E, how does the length of the year depend on the

distance to the star?

This last set of problems gives you a glimpse of how curves are used in the study of
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DNA knotting. In the figure below, x⃗ and y⃗ are two parametrized curves in R3. They are

defined on the same interval [a, b] of t-values. They are closed, meaning that x⃗(a) = x⃗(b)

and y⃗(a) = y⃗(b). There are three subtle concepts to be developed.

Here’s the first concept. At any time t in [a, b], let u⃗(t) be the unit vector pointing

from x⃗(t) toward y⃗(t), and let t⃗ = x⃗ ′/ |x⃗ ′| be the unit tangent vector of x⃗. (Draw a

picture!) Define the twist as

Tw(x⃗, y⃗) =
1

2π

∫ b

a

(⃗t× u⃗) · du⃗
dt

dt.

Intuitively, the twist measures how y⃗ revolves about x⃗. Perhaps you agree that it seems

difficult to compute. Or maybe it’s easy to compute in some special cases, but any slight

deviation from those cases might turn it into a big hassle. It is a delicate geometric

concept.

For the second concept, focus on x⃗ and ignore y⃗. Each point where x⃗ appears to cross

itself can be assigned a sign, ±1, as follows. Assign to each segment of the curve its

unit tangent vector t⃗ at the crossing point. Rotate the top vector until it aligns with the

bottom vector. If the rotation angle is in (0, π), then assign +1; if it’s in (−π, 0), then

assign −1. By summing over all of the crossing points, we get the writhe of x⃗, which is
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denoted Wr(x⃗). See the diagram below. (Actually the writhe needs to be averaged over

all possible viewpoints, but let’s ignore that.)

G. For the example shown in the first figure above, compute the writhe.

The third concept is similar to the second. Now we ignore where x⃗ crosses itself (and

where y⃗ crosses itself). Instead we focus on where x⃗ and y⃗ cross each other. Following

the same idea as above, assign a ±1 to each point where x⃗ and y⃗ cross. Sum these signs

and divide by 2. The resulting integer is the linking number Lk(x⃗, y⃗).

H. For the example shown in the first figure above, compute the linking number.

Now here’s something interesting. It can be proved — not just in this example, but

in quite a general situation — that

Lk(x⃗, y⃗) = Tw(x⃗, y⃗) +Wr(x⃗).

This result is surprising in two ways. First, the linking number and the twist strongly

depend on y⃗. However, their difference — the writhe — does not depend on y⃗ at all.

Second, the linking number and the writhe are topological, meaning that they aren’t
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affected by small perturbations of x⃗ and y⃗, but rather depend only on the crude question

of how the curves x⃗ and y⃗ are “knotted” in space. Therefore the difference — the twist

— must also be topological, although nothing in its definition suggests so!

What does all of this have to do with DNA? Well, as it passes through its life, a

DNA molecule might be coiled up sometimes (for storage and movement) and uncoiled

sometimes (for replication). Biologists want to understand these processes, not just for

the inherent value of scientific knowledge, but so that they can devise treatments for

diseases caused by errors in these processes. In particular, when a DNA molecule needs

to uncoil (or coil), it is aided by a class of enzymes called topoisomerases. Picture such

an enzyme as a little machine that travels along the DNA molecule. Every so often, it

comes to a point where its segment of the molecule crosses close by another segment. At

that point, it can grab both segments, cut one of them, pass it around the other one, and

reattach it. Doing so can help the DNA knot uncoil.

The enzyme doesn’t do this cut-and-reattach operation at every opportunity. Some-

how it “decides” to do it in some circumstances and not in others. The question is: How

does it decide? The answer is not obvious. One early hypothesis was that the decision

process is random — basically, the enzyme flips a coin. But experimental data suggest

that the enzyme is much more efficient at unknotting DNA than it would be, if it were

deciding randomly. Somehow it has insight into the large-scale question of how the DNA

molecule is knotted on itself. That’s surprising, because the enzyme, being small, can

sense only a little neighborhood of where it is. There’s some subtle interaction between

the small-scale geometry of the molecule and the large-scale topology.

Mathematically, a loop of DNA is a double helix floating in R3. Let y⃗ be one of

the strands of the double helix. Let x⃗ be the imaginary center curve, about which the

two strands mutually revolve. Then the linking number and the writhe get at something

topological about how the DNA molecule is knotted, while the twist gets at something

geometric about how much the strands curve about each other. Mathematical biologists

use this theory to model how the topoisomerases employ geometric information to make

topological changes in DNA. By the way, the linking number might be 500 or 5,000. So

the problem is big.

For further reading, consult the chapter by White in the National Research Council’s

Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molec-

ular Biology (1995). See also Buck’s article “DNA Topology” in Advanced School and

Conference on Knot Theory and its Applications to Physics and Biology (2009).
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