
Exam C Solutions Math 134, Fall 2024, Carleton College

A.A. The determinant of A is 0, by the square matrix theorem.

A.B. The column space of A is not all of Rn (n-dimensional space), by the square matrix

theorem. In other words, A has rank less than n.

A.C. Because A is n × n, the SVD writes A as A = UΣV ⊤, where U , Σ, and V are all n × n,

U and V are orthogonal, and Σ is diagonal. Moreover, because the rank of A is less than n, we

know that Σ has at least one 0 along its diagonal.

A.D. The transpose A⊤ is also n×n and non-invertible. The non-invertibility can be seen from

detA⊤ = detA, from (A⊤)−1 = (A−1)⊤, etc.

B.A. Let x⃗ =
[
j a

]⊤
be a vector that records the numbers of juvenile and adult females.

Let x⃗0, x⃗1, x⃗2, . . . be the values of x⃗ as the years progress. Then we have x⃗k+1 = Ax⃗k, where

A =

[
0 1/2

1/5 9/10

]
.

B.B. To find the eigenvalues of A, we compute

det(A− λI) = det

[
−λ 1/2

1/5 9/10− λ

]
= (−λ)(9/10− λ)− 1/10

= λ2 − 9

10
λ− 1

10
= (λ− 1)(λ+ 1/10).

So the eigenvalues are 1 and −1/10. As time progresses, the part of the system captured by the

second eigenvector will shrink (because it is smaller than 1 in absolute value), and the system

will be attracted to the first eigenvector. To find that eigenvector, we solve (A− I)x⃗ = 0⃗:[
−1 1/2 0

1/5 −1/10 0

]
7→

[
1 −1/2 0

0 0 0

]
.

So we find that j = a/2. In other words, there are twice as many adult females as juvenile

females. In other words, two thirds of females are adult, and one third are juvenile. Because the

eigenvalue is 1, the population is not growing or shrinking. It is somehow perfectly in equilibrium

with its habitat.

C.A. The three entries of x⃗ are the probabilities that a random web crawler is at the first,

second, or third pages, respectively, at the time in question. (Equivalently, if we imagine a huge
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number of web crawlers, then the three entries are the fraction of those crawlers that are at the

first, second, or third pages at the time in question.) Then x⃗k+1 = Px⃗k, where

P =


0 1 0

1/2 0 1

1/2 0 0

 .

Because the entries of each x⃗ sum to 1, and each of the columns of P sum to 1, we have a

Markov chain.

C.B. (By the way, P 5 is entirely positive, and P 4 is not entirely positive.) Because some power

of P is entirely positive, we know that the Markov chain has a unique steady state, which is a

certain eigenvector associated to eigenvalue 1. To find that eigenvector, we solve (P − I)x⃗ = 0⃗:
−1 1 0 0

1/2 −1 1 0

1/2 0 −1 0

 7→


1 −1 0 0

0 −1/2 1 0

0 1/2 −1 0

 7→


1 −1 0 0

0 1 −2 0

0 0 0 0

 .

The third variable is free, so we set it to 1 to obtain an eigenvector
2

2

1

 .

The entries of this vector sum to 5. We scale the vector by 1/5, to obtain a non-negative vector

that sums to 1 and hence is a valid probability vector:

q⃗ =


2/5

2/5

1/5

 .

This q⃗ is the steady state of the Markov chain.

C.C. (I accepted either of the following two answers. The first one is literal, while the second

one demonstrates that we have seen this application already.)

If we set a bunch of random web crawlers loose on the Web, then come back at a much later

time, we will find that about 40% of them are at the first page, 40% are at the second, and 20%

are at the third. If we watch what happens from there, we will see the web crawlers maintaining

those percentages even as they move around.

Practically, what we’re doing here is the Markov chain interpretation of the PageRank algo-

rithm. According to this algorithm, the first and second pages are each twice as valuable as the

third page.
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D. Let A be the matrix on the left. We are trying to solve Ax⃗ = 0⃗. In the solution x⃗ =[
x y z

]⊤
, the matrix on the right shows that x and z are free and y = −2z. Setting x = 1

and z = 0, and then x = 0 and z = 1, produces two independent solution vectors
1

0

0

 ,


0

−2

1

 .

These vectors constitute a basis for the null space of A.

E. To compute the SVD by hand, first we compute

A⊤A =

[
6 1

1 6

]
.

Then we find the eigenvalues of A⊤A:

det(A⊤A− λI) = det

[
6− λ 1

1 6− λ

]
= (6− λ)2 − 1

= λ2 − 12λ+ 35

= (λ− 7)(λ− 5).

The eigenvalues are λ1 = 7 and λ2 = 5. To find the eigenvector v⃗1 for λ1, we solve (A
⊤A−7I)x⃗ =

0⃗. The augmented matrices row reduce like this:[
−1 1 0

1 −1 0

]
7→

[
1 −1 0

0 0 0

]
.

So we obtain v⃗1 =
[
1 1

]⊤
. Similarly, we find that the eigenvector v⃗2 for λ2 is v⃗2 =[

−1 1
]⊤

. The eigenvectors are orthogonal, as expected. Scaling them to have length 1

and putting them into the columns of a matrix V , we have

V =

[
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]
.

The Σ matrix is

Σ =


√
λ1 0

0
√
λ2

0 0

 =


√
7 0

0
√
5

0 0

 .

The first two columns of the U matrix are

u⃗1 =
1√
7
Av⃗1 =

1√
14


2 1

1 1

−1 2


[

1

1

]
=


3/
√
14

2/
√
14

1/
√
14


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and

u⃗2 =
1√
5
Av⃗2 =

1√
10


2 1

1 1

−1 2


[

−1

1

]
=


−1/

√
10

0

3/
√
10

 .

(A solution that made it this far was awarded 10 of the 12 points.) To find the third column

of U , we need to find a unit vector perpendicular to both u⃗1 and u⃗2. So we want to solve the

linear system u⃗1 · x⃗ = 0, u⃗2 · x⃗ = 0. In augmented matrices this system is[
3/
√
14 2/

√
14 1/

√
14 0

−1/
√
10 0 3/

√
10 0

]
7→

[
1 2/3 1/3 0

0 2/(3
√
10)

√
10/3 0

]

7→

[
1 2/3 1/3 0

0 1 5 0

]

7→

[
1 0 −3 0

0 1 5 0

]
.

So a solution and a unit solution are
3

−5

1

 , u⃗3 =


3/
√
35

−5/
√
35

1/
√
35

 .

So we finally see that

U =


3/
√
14 −1/

√
10 3/

√
35

2/
√
14 0 −5/

√
35

1/
√
14 3/

√
10 1/

√
35

 .

(And one can check that A = UΣV ⊤, as expected.)

F.A. The first column of P is, by convention, the eigenvector corresponding to the largest eigen-

value of the sample covariance. (The largest eigenvalue is the same as the greatest eigenvalue,

because all eigenvalues of covariance are non-negative.) This eigenvector v⃗ tells us the direction

of the greatest dispersion (spread) in the data set, relative to the sample mean m⃗. In other

words, if we were trying to draw a line through the “middle” of the data cloud, then that line

would pass through m⃗ in the direction of v⃗.

F.B. To compute a w⃗ from its corresponding x⃗, we translate by −m⃗ and then rotate/flip by

P⊤, like this: w⃗37 = P⊤(x⃗37 − m⃗).

F.C. To visualize the data set, we plot the first two or three components of the w⃗1, w⃗2, . . . , w⃗n

vectors. Because these vectors are organized to show the directions of greatest dispersion, key

features of the data set, such as multimodality, are often revealed by looking at their first couple

of components.
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