
Exam A Solutions CS 251, Fall 2024, Carleton College

A.A. Functions have a uniform and simple pattern of evaluation: All of the function’s arguments

are evaluated, before the function is applied to them. Scheme’s let does not follow this pattern,

because it leaves some of its arguments — namely, the local variables and the sublists that they

head — unevaluated. Therefore let cannot be a function. It is a keyword.

A.B. The given let expression is equivalent to

((lambda (var1 var2) body) val1 val2)

Another correct answer is the curried version

(((lambda (var1) (lambda (var2) body)) val1) val2)

B. Here is my solution:

;Input f: A function of one argument.

;Input lazy: A lazy list.

;Return: A lazy list. The results of applying f to the elements of lazy.

(define map-lazy

(lambda (f lazy)

(if (null? lazy)

’()

(cons (f (car lazy))

(lambda () (map-lazy f ((cdr lazy))))))))

C.A. In the given code, the variable myArray is being allocated on the stack. But the stack

is not allowed to hold such large variables. When I start using myArray, I access regions of

memory illegally, and the operating system terminates the program with a seg fault.

To allocate such a large variable, we need to allocate it on the heap, even though its use is

local to this function.

C.B. Here is my C code:

void myFunc() {

int *myArray = malloc(1000000000 * sizeof(int));

assert(myArray != NULL);

/* ...do stuff with myArray here... */

free(myArray);

}

1



Exam A Solutions CS 251, Fall 2024, Carleton College

D.A. Here are the three syntax error fixes in main:

attachLeg(&dog);

printf("%d\n", dog.numLegs);

setEyePairs(&spider, v[1]);

D.B. Here is the printed output:

5

9 2 1 1 6

9 2 1 1 6

E.A. With static scoping, the parent of a function application’s local frame is the frame in

which the function was defined/constructed. With dynamic scoping, the parent of a function

application’s local frame is the frame in which the function is being applied/called/invoked.

E.B. This f is behaving as if it’s statically scoped, because it implicitly uses x = 3, then x = 5,

then x = 5. It’s definitely not dynamically scoped, because it doesn’t pick up the x = 6 from

the calling frame in the third example. (By the way, the language in question is Mathematica.)

E.C. This g implicitly uses x = 3, then x = 3, then x = 3. It seems that the value of x, that

was in effect when g was defined, was permanently “baked into” g. That’s not static scope or

dynamic scope. It’s something else. It’s some kind of partial evaluation upon definition.

2


