Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function that grows without bound. That is, $\lim _{n \rightarrow \infty} f(n)=\infty$. We say that $g(n)$ is $\mathcal{O}\left(2^{f(n)}\right)$ if there exist positive constants C, N such that $g(n) \leq C 2^{f(n)}$ for all $n \geq N$. Similarly, we say that $g(n)$ is $2^{\mathcal{O}(f(n))}$ if there exist positive constants C, N such that $g(n) \leq 2^{C f(n)}$ for all $n \geq N$.
A.A. Prove that if g is $\mathcal{O}\left(2^{f(n)}\right)$ then g is $2^{\mathcal{O}(f(n))}$.
A.B. Find a g in $2^{\mathcal{O}(f(n))}$ that is not in $\mathcal{O}\left(2^{f(n)}\right)$.

Earlier in our course - maybe on Day 15? - we described a Turing machine for testing whether a given directed graph G was in fact a connected undirected graph. For the sake of consistency, assume that $\langle G\rangle$ is (a reasonable version of) the adjacency matrix of G.
B. What are the time complexity and space complexity of that Turing machine? Analyze them in detail, and state your answers using \mathcal{O} notation. Actually, give two answers for each: one in terms of the input size n, and one in terms of the number m of nodes in the graph.

