In our textbook, Theorem 7.44, Problem 7.26, and Problem 7.27 cover this material.

Definitions: For an undirected graph $G$, a vertex cover is a set of nodes such that every edge is adjacent to at least one node in the set. Let VERTEX-COVER be the set of all strings $\langle G, \ell\rangle$, where $\ell \geq 1$ is an integer and $G$ is an undirected graph that has an $\ell$-node vertex cover.

Here is a polynomial-time mapping reduction $F$ of $3 S A T$ to VERTEX-COVER. Given the encoding $\langle\phi\rangle$ of a Boolean formula $\phi$ in 3CNF, $F$ does these steps:

1. Let $m$ be the number of distinct variables in $\phi$, and let $k$ be the number of clauses. Allocate space for a graph $G$ of $2 m+3 k$ nodes and $m+6 k$ edges.
2. For each distinct variable $x$ in $\phi$, add nodes labeled $x$ and $\bar{x}$, and join these two nodes with an edge to form a "pair". (So this step adds $2 m$ nodes and $m$ edges total.)
3. For each clause $(x \vee y \vee z)$ in $\phi$, add three nodes with those labels, and join these three nodes with three edges to form a "triangle". (Here, each of $x, y$, and $z$ can be any variable or its negation. This step adds $3 k$ nodes and $3 k$ edges.)
4. For each node among the triangles, connect that node to the unique node among the pairs that has the same label. (This step adds $3 k$ edges.)
5. Let $\ell=m+2 k$, and output $\langle G, \ell\rangle$.
A.A. Pick a satisfiable $\phi$, show the $G$ and $\ell$ that $F$ produces from that $\phi$, and identify an $\ell$-node vertex cover in $G$. (So it's plausible that $\langle\phi\rangle \in 3 S A T \Rightarrow F(\langle\phi\rangle) \in V E R T E X-C O V E R$.)
A.B. Pick an unsatisfiable $\phi$, show the $G$ and $\ell$ produced, and explain why no $\ell$-node vertex cover exists. (So it's plausible that $\langle\phi\rangle \in 3 S A T \Leftarrow F(\langle\phi\rangle) \in V E R T E X-C O V E R$.)
A.C. Show that the length of the string $\langle G, \ell\rangle$ is polynomial in the length $n$ of the string $\langle\phi\rangle$. (So, because $F$ "doesn't have to do much thinking beyond what's needed to write $\langle G, \ell\rangle$ ", it's plausible that $F$ is polynomial-time.)

Definitions: Let $\phi$ be a 3CNF formula. An $\neq$-assignment is an assignment of truth values to the variables in $\phi$, such that each clause has one true term (and two false terms) or two true terms (and one false term). Let $\neq S A T$ be the set of strings $\langle\phi\rangle$, where $\phi$ is a 3CNF formula that has an $\neq$-assignment. Notice that $\neq S A T \subseteq 3 S A T$.

Here is a polynomial-time mapping reduction $F$ from $3 S A T$ to $\neq S A T$. Given the encoding $\langle\phi\rangle$ of a Boolean formula $\phi$ in $3 \mathrm{CNF}, F$ does these steps:

1. Let $k$ be the number of clauses in $\phi$. Allocate space for a new 3CNF formula $\psi$ that has $2 k$ clauses, all of the variables of $\phi$, and $k+1$ new variables, which are called $w_{1}, w_{2}, \ldots, w_{k}, b$.
2. For $i=1, \ldots, k$, let $(x \vee y \vee z)$ be the $i$ th clause in $\phi$. (Here, each of $x, y$, and $z$ can be any variable or its negation.) Add two clauses $\left(x \vee y \vee w_{i}\right) \wedge\left(\overline{w_{i}} \vee z \vee b\right)$ to $\psi$.
3. Output $\langle\psi\rangle$, where $\psi$ is the 3CNF formula of $2 k$ clauses that was just produced.
B.A. Pick a satisfiable $\phi$, show the $\psi$ that $F$ produces from that $\phi$, and identify an $\neq-$ assignment for $\psi$.
B.B. Pick an unsatisfiable $\phi$, show the $\psi$ produced, and explain why $\psi$ has no $\neq$-assignment.
B.C. Prove that the logical negation of any $\neq$-assignment is also an $\neq$-assignment. (This problem is relatively easy, but it's useful for the next part of the problem.)
B.D. Prove that $\langle\phi\rangle \in 3 S A T \Leftrightarrow F(\langle\phi\rangle) \in \neq S A T$.

The formula $\psi$ is about twice as large as the formula $\phi$, and $F$ doesn't need to do much thinking to construct $\psi$, so $F$ should be polynomial-time. Let's not analyze the time complexity of $F$ in more detail than that.

Definitions: In an undirected graph $G$, a cut is a partition of the nodes into two disjoint subsets $S$ and $T$. The size of a cut is the number of edges that have one endpoint in $S$ and the other in $T$. (Imagine drawing a line $L$ through $G$ and rearranging the nodes so that the $S$-nodes are on one side of $L$ and the $T$-nodes are on the other side. Then the size of the cut is the number of edges that $L$ "cuts".) Let $M A X-C U T$ be the set of strings $\langle G, \ell\rangle$ such that $\ell \geq 1$ is an integer and $G$ has a cut of size $\ell$ or greater.

Here is a polynomial-time mapping reduction $F$ from $\neq S A T$ to $M A X-C U T$. Given the encoding $\langle\phi\rangle$ of a Boolean formula $\phi$ in 3CNF, $F$ does these steps:

1. Let $m$ be the number of distinct variables in $\phi$, and let $k$ be the number of clauses. Allocate space for a graph $G$ of $6 m k$ nodes and $9 m k^{2}+3 k$ edges.
2. For each distinct variable $x$ in $\phi$ : Add $3 k$ nodes labeled $x$ and $3 k$ nodes labeled $\bar{x}$, and add an edge connecting each $x$-node to each $\bar{x}$-node. (Total: $6 m k$ nodes and $9 m k^{2}$ edges.)
3. For each clause $(x \vee y \vee z)$ in $\phi$, add three edges connecting nodes labeled $x, y, z$ into a triangle. Do not use any node in more than one clause triangle. (Total: $3 k$ edges.)
4. Let $\ell=\ldots$, and output $\langle G, \ell\rangle$.
C. In the last step, what should $\ell$ be? Also, prove that $\langle\phi\rangle \in \neq S A T \Leftrightarrow F(\langle\phi\rangle) \in M A X-C U T$. (I recommend, but do not require, that you first do a couple of examples to build intuition, as in our previous problems.)

Looking for more practice with polynomial-time mapping reductions? Study the reduction of $3 S A T$ to $S U B S E T-S U M$ in our textbook. These reductions get easier, as you see more examples!

