A.A. [Instead of drawing, I'll describe in words. $P \hookrightarrow NP$ because every TM is an NTM. PSPACE \hookrightarrow NPSPACE for the same reason. $P \hookrightarrow$ PSPACE by the space-time lemma. NP \hookrightarrow NPSPACE and EXPTIME \hookrightarrow EXPSPACE for the same reason. NP \hookrightarrow EXPTIME by our usual NTM-on-TM simulation. NP \hookrightarrow PSPACE for the same reason. NPSPACE \hookrightarrow PSPACE by Savitch's theorem. PSPACE \hookrightarrow EXPTIME by counting configurations.]

A.B. [Instead of drawing, I'll describe in words: RegLs \subseteq CFLs \subseteq P \subseteq EXPSPACE \subseteq DecLs. And DecLs is the intersection of RecLs and CoRecLs.]

B. [Instead of drawing, I'll describe in words. There are three states. There is a transition from the first state to the second state labeled " $_ \mapsto \#, \mathcal{R}$ ". There is a transition from the second state to the third state with the same label. There is a transition from the second state to itself with two labels: " $_ \mapsto 0, \mathcal{R}$ " and " $_ \mapsto 1, \mathcal{R}$ ".

C. Suppose that $A \leq_P B$ and $B \in NP$. So there exists a polynomial-time TM F such that $w \in A \Leftrightarrow F(w) \in B$, and there exists a polynomial-time NTM N that decides B. Here is an NTM M to decide A. On input w:

- 1. Run F on w to obtain the string F(w).
- 2. Run N on F(w) and output whatever N outputs.

This NTM M decides A, because

 $w \in A \Leftrightarrow F(w) \in B \Leftrightarrow N \text{ accepts } F(w) \Leftrightarrow M \text{ accepts } w.$

The time taken by step 1 is bounded by n^k for some k (and for large n). The length of F(w) is bounded by n^k , by the basic space-time lemma. The time taken by the step 2 is bounded by $(n^k)^{\ell}$ for some ℓ . So M is polynomial-time. Thus $A \in NP$.

D. First I fill the diagonal (where i = j), then the diagonal above that, then the diagonal above that, then the diagonal above that, and finally the top right cell. I use \emptyset to denote that no variables of G can generate the desired substring. In the end, the lack of S in the top right cell means that S cannot generate w, and hence that $w \notin L(G)$. That is, the polynomial-time algorithm rejects w.

	j = 1	j=2	j = 3	j = 4	j = 5
i = 1	A, B	A, S	S	Ø	Ø
i = 2		A, B	S	Ø	Ø
i = 3			В	Ø	Ø
i = 4				A, B	S
i = 5					В

E.A.

q_0	0	1
1	q_1 1	
0	q_2	1
<i>a</i> .	0	1

E.B.

0	q_2	0
q_1	0	0

F. If the NTM N uses space $s_N(n)$, then Savitch's theorem says that there is an equivalent TM M that uses space $\mathcal{O}(s_N(n)^2)$. As we have discussed in class, the number of possible configurations of M is then $2^{\mathcal{O}(s_N(n)^2)}$, and M cannot reuse a configuration without entering an infinite loop, so the time complexity of M is

$$t_M(n) = 2^{\mathcal{O}(s_N(n)^2)}.$$