A.A. [Instead of drawing, I'll describe in words. $\mathrm{P} \hookrightarrow$ NP because every TM is an NTM. PSPACE \hookrightarrow NPSPACE for the same reason. $\mathrm{P} \hookrightarrow$ PSPACE by the space-time lemma. NP \hookrightarrow NPSPACE and EXPTIME \hookrightarrow EXPSPACE for the same reason. NP \hookrightarrow EXPTIME by our usual NTM-on-TM simulation. NP \hookrightarrow PSPACE for the same reason. NPSPACE \hookrightarrow PSPACE by Savitch's theorem. PSPACE \hookrightarrow EXPTIME by counting configurations.]
A.B. [Instead of drawing, I'll describe in words: RegLs $\subseteq \mathrm{CFLs} \subseteq \mathrm{P} \subseteq$ EXPSPACE \subseteq DecLs. And DecLs is the intersection of RecLs and CoRecLs.]
B. [Instead of drawing, I'll describe in words. There are three states. There is a transition from the first state to the second state labeled " $\lrcorner \mapsto \#, \mathcal{R} "$. There is a transition from the second state to the third state with the same label. There is a transition from the second state to itself with two labels: " $\lrcorner \mapsto 0, \mathcal{R}$ " and " $\lrcorner \mapsto 1, \mathcal{R}$ ".
C. Suppose that $A \leq_{P} B$ and $B \in N P$. So there exists a polynomial-time TM F such that $w \in A \Leftrightarrow F(w) \in B$, and there exists a polynomial-time NTM N that decides B. Here is an NTM M to decide A. On input w :

1. Run F on w to obtain the string $F(w)$.
2. Run N on $F(w)$ and output whatever N outputs.

This NTM M decides A, because

$$
w \in A \Leftrightarrow F(w) \in B \Leftrightarrow N \text { accepts } F(w) \Leftrightarrow M \text { accepts } w .
$$

The time taken by step 1 is bounded by n^{k} for some k (and for large n). The length of $F(w)$ is bounded by n^{k}, by the basic space-time lemma. The time taken by the step 2 is bounded by $\left(n^{k}\right)^{\ell}$ for some ℓ. So M is polynomial-time. Thus $A \in N P$.
D. First I fill the diagonal (where $i=j$), then the diagonal above that, then the diagonal above that, then the diagonal above that, and finally the top right cell. I use \emptyset to denote that no variables of G can generate the desired substring. In the end, the lack of S in the top right cell means that S cannot generate w, and hence that $w \notin L(G)$. That is, the polynomial-time algorithm rejects w.

	$j=1$	$j=2$	$j=3$	$j=4$	$j=5$
$i=1$	A, B	A, S	S	\emptyset	\emptyset
$i=2$		A, B	S	\emptyset	\emptyset
$i=3$			B	\emptyset	\emptyset
$i=4$				A, B	S
$i=5$					B

E.A.

q_{0}	0	1
1	q_{1}	1

0	q_{2}	1
q_{rej}	0	1

E.B.

0	q_{2}	0
q_{1}	0	0

F. If the NTM N uses space $s_{N}(n)$, then Savitch's theorem says that there is an equivalent TM M that uses space $\mathcal{O}\left(s_{N}(n)^{2}\right)$. As we have discussed in class, the number of possible configurations of M is then $2^{\mathcal{O}\left(s_{N}(n)^{2}\right)}$, and M cannot reuse a configuration without entering an infinite loop, so the time complexity of M is

$$
t_{M}(n)=2^{\mathcal{O}\left(s_{N}(n)^{2}\right)}
$$

