A. My regular expression is
$R R^{*}$ Initialize $R^{*} \backslash(\&$
(without any white space), where R is the regular expression
$(a \cup \cdots \cup z \cup A \cup \cdots \cup Z \cup 0 \cup \cdots \cup 9)$,
which matches a single alpha-numeric character. [By the way, the three examples come verbatim from CS 311: Graphics. Also, I meant to stipulate that the first function name character should be a lower-case letter and the first function name character after the Initialize (if any) should be an upper-case letter. I forgot. But you might try to solve that harder version of the problem.]
B.A. Let $w=0^{p} 110^{p} 1$. [Notice that $w=0^{p} 1^{p} 0^{p}$ does not work!]
B.B. Let $w=0^{p} 1^{p}$.
B.C. Let w be the string $1^{p} \wedge 1=1^{p}$.
C. In the following context-free grammar, the start variable Fun generates function calls. The variable Non generates non-empty argument lists. The variable Arg generates arguments. The variable Id generates identifiers. The variable Let generates letters.

$$
\begin{aligned}
\text { Fun } & \rightarrow \mathrm{Id}() \mid \mathrm{Id}(\text { Non }) \\
\text { Non } & \rightarrow \mathrm{Arg} \mid \mathrm{Arg}, \text { Non } \\
\text { Arg } & \rightarrow \mathrm{Id} \mid \text { Fun } \\
\mathrm{Id} & \rightarrow \text { Let } \mid \text { LetId } \\
\text { Let } & \rightarrow \mathrm{a}|\mathrm{~b}| \ldots|\mathrm{z}| \mathrm{A}|\mathrm{~B}| \ldots \mid \mathrm{Z}
\end{aligned}
$$

[By the way, it would be more realistic to include upper-case letters and digits, but not to let identifiers begin with digits. Think of how to do that.]
D.A. TRUE. [There are only finitely many strings of length less than or equal to b, so $A_{\leq b}$ is finite. As has been mentioned in class and proved on earlier exams, any finite language is regular.]
D.B. TRUE. [This is one reason why the alphabet Σ tends to be boring.]
D.C. FALSE. [We mentioned this in class. Here's a quick proof. The languages $\left\{a^{m} b^{m} c^{k}\right\}$ and $\left\{a^{k} b^{m} c^{m}\right\}$ are context-free, but their intersection $\left\{a^{m} b^{m} c^{m}\right\}$ is not. So the class of context-free languages is not closed under intersection. But it's closed under union. So it can't be closed under complementation.]
D.D. TRUE. [One can build a DFA for the reversal of A. It processes a string, one column at
a time, keeping track of whether it is carrying 0,1 , or 2.]
D.E. TRUE. [We used this fact in one of our proof sketches in class. The PDA N can be modified to produce P as follows. Wherever N has a transition $a, t \rightarrow u$ that both pops and pushes, replace it with two transitions $a, t \rightarrow \epsilon$ and $\epsilon, \epsilon \rightarrow u$ passing through a new state. Wherever N has a transition $a, \epsilon \rightarrow \epsilon$ that neither pops nor pushes, replace it with two transitions $a, \epsilon \rightarrow t$ and $\epsilon, t \rightarrow \epsilon$ passing through a new state.]

