A. No, this language A is not regular, as I now prove. Assume for the sake of contradiction that A is regular. Let p be a pumping length for A. Let $w=0^{p} 10^{p}$. Then $w \in A$ and $|w|=2 p+1 \geq p$, so w can be pumped. In the usual way, $w=x y z$, where $|x y| \leq p$. So y is a substring of the first 0^{p} in w, and $y=0^{k}$ for some k such that $1 \leq k \leq p$. The pumping lemma says that

$$
x y^{0} z=x z=0^{p-k} 10^{p}
$$

is another string in A. However, this string is not in A, because $p-k<p$. This contradiction implies that A is not regular.
B. Yes, A_{k} is regular for all k. We can demonstrate so by exhibiting a regular expression for each A_{k} :

$$
\begin{aligned}
& A_{0}=L\left(0^{*} 1\right) \\
& A_{1}=L\left(00^{*} 10\right) \\
& A_{2}=L\left(000^{*} 100\right)
\end{aligned}
$$

and in general

$$
A_{k}=L\left(0^{k} 0^{*} 10^{k}\right)
$$

[Alternatively, if you draw DFAs for A_{0}, A_{1}, and A_{2}, then you can quickly convince yourself that you can draw a DFA for any A_{k}.]
C. Here is my NFA:

States, that look like accept states Xed out, are non-accept states. [I constructed this NFA following our usual algorithm for converting a regular expression to an NFA, but with a couple of shortcuts.]
D.A. Here is the parse tree:

[The CFG given above has a small error. The $V p$ rule should be $V p \rightarrow V e \mid A d v V p$. The parse tree above reflects that corrected rule. If you use the CFG with the incorrect form of the rule, then the sentence still parses, with a slightly simpler parse tree.]
D.B. Yes, the new sentence parses. We get the same parse tree as in Problem D.A, except that the the and smart nodes are switched. [The CFG is not sophisticated enough to capture the fact that this new sentence is not actually grammatical in English.]
D.C. Yes, the language of this CFG happens to be regular. The $N p$ variable of the CFG generates the language of the regular expression

$$
\text { (brown } \cup \text { the } \cup \text { smart })^{*}(\text { mouse } \cup \text { cat } \cup \text { kumquat } \cup \text { dignity }) \text {. }
$$

Similarly, the $V p$ variable of the CFG generates the language of the regular expression

$$
\text { (idly } \cup \text { seldom } \cup \text { sarcastically) }(\text { eats } \cup \text { covets } \cup \text { questions }) \text {. }
$$

[This regular expression is based on the corrected form of the CFG. The incorrect CFG, that actually appears on the exam, yields a simpler regular expression.] Therefore the language of the CFG is the language of the regular expression

$$
N V \cup N V N,
$$

where N and V are the regular expressions just described, respectively.

