B. A lifting of $p: E \rightarrow B$ is a function $\tilde{p}: E \rightarrow E$ such that $p \circ \tilde{p}=p$. The identity map $i: E \rightarrow E$ certainly satisfies $p \circ i=p$ and thus is a lifting of p. But must a lifting of p be i ?

If we could cancel p from both sides of the equation $p \circ \tilde{p}=p$, then we could conclude that $\tilde{p}=i$. We can do this when p is injective and thus bijective and thus invertible.

However, when p is not injective, \tilde{p} is not necessarily the identity map, because liftings are not necessarily unique. Consider for example our most-studied covering map, where $E=\mathbb{R}$, $B=\mathbb{S}^{1}$, and $p(x)=(\cos 2 \pi x, \sin 2 \pi x)$. Then $\tilde{p}(x)=x+k$, for any integer k, satisfies $p \circ \tilde{p}=p$.
[In fact, this kind of map \tilde{p} ends up being important to the theory of covering spaces. It is called a deck transformation or covering transformation. See Section 81.]
C.A. Yes, $(0,2) \cup(3,5)$ is homeomorphic to $(0,2) \sqcup(3,5)$ by the function

$$
f(x)= \begin{cases}(0, x) & \text { if } x \in(0,2) \\ (1, x) & \text { if } x \in(3,5)\end{cases}
$$

However, $(0,2) \cup(1,3)$ is not homeomorphic to $(0,2) \sqcup(1,3)$, because the former is a single interval $(0,3)$ while the latter is homeomorphic to the union of two disjoint intervals.
[By the way, this \sqcup operation on spaces is called the disjoint union.]
C.B. Yes, $X \sqcup Y$ must be compact. Before I prove so, notice that $U=\{0\} \times X$ and $V=\{1\} \times Y$ are open subsets of $X \sqcup Y$. Moreover, U is homeomorphic to X, and V is homeomorphic to Y.

Let $\left\{U_{j}\right\}_{j \in J}$ be an open cover of $X \sqcup Y$. Then $\left\{U \cap U_{j}\right\}_{j \in J}$ is an open cover of U, which is compact. So there exists a finite subset $K \subseteq J$ such that $\left\{U \cap U_{j}\right\}_{j \in K}$ is an open cover of U. Similarly, there exists a finite subset $L \subseteq J$ such that $\left\{V \cap U_{j}\right\}_{j \in L}$ is an open cover of V. Then $\left\{U_{j}\right\}_{j \in K \cup L}$ is a finite subcover of the original open cover of $X \sqcup Y$. So $X \sqcup Y$ is compact.
C.C. Well, $X \sqcup Y$ is not connected (unless X or Y is empty), because the U and V defined above are non-empty open subsets that partition $X \sqcup Y$. So $X \sqcup Y$ is not path connected.

So it seems that $\pi_{1}(X \sqcup Y, z)$ depends on where z is. If $z \in U$, then $z=(0, x)$ for some x, and $\pi_{1}(X \sqcup Y, z)$ is naturally isomorphic to $\pi_{1}(X, x)$. If $z \in V$, then $z=(1, y)$ for some y, and $\pi_{1}(X \sqcup Y, z)$ is naturally isomorphic to $\pi_{1}(Y, y)$.
D. [We know that any map $f: \mathbb{S}^{1} \rightarrow \mathbb{R}^{1}$ must have a point $x \in \mathbb{S}^{1} \subseteq \mathbb{R}^{2}$ such that $f(x)=f(-x)$. This fact was proved in our Day 09 homework. Because the torus is $\mathbb{S}^{1} \times \mathbb{S}^{1}$, we should be able to say something similar about maps from it. I came up with Claim 0 below. Students came up with many other answers, a few of which are listed below.]

Claim 0: Let $f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R} \times \mathbb{R}$ be a map of the form $f(x, y)=(g(x), h(y))$. Then there exists a point $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1} \subseteq \mathbb{R}^{2} \times \mathbb{R}^{2}$ such that $f(x, y)=f(-(x, y))$.

Proof 0 : We know that $g: \mathbb{S}^{1} \rightarrow \mathbb{R}$ has an x such that $g(x)=g(-x)$, and similarly there
exists a y such that $h(y)=h(-y)$. Then

$$
f(-(x, y))=f(-x,-y)=(g(-x), h(-y))=(g(x), h(y))=f(x, y) .
$$

So the point (x, y) has the desired property.
False claim 1: Let $f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ be a map. Then there exists a point $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1} \subseteq$ $\mathbb{R}^{2} \times \mathbb{R}^{2}$ such that $f(x, y)=f(-(x, y))$.

Disproof 1: Define f by $f(x, y)=x \in \mathbb{R}^{2}$. Then, for all $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1}$,

$$
f(-(x, y))=f(-x,-y)=-x \neq x=f(x, y)
$$

False Claim 2: Embed $\mathbb{S}^{1} \times \mathbb{S}^{1}$ into \mathbb{R}^{3} so that it is symmetric about the origin. Then every $\operatorname{map} f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ has an x such that $f(x)=f(-x)$.

Disproof 2: Let f be the orthogonal projection onto the x - y-plane.
Claim 3: Let $f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R}$ be a map. Then along every meridian and every parallel there are antipodal points that have the same value under f. Precisely, for all $x \in \mathbb{S}^{1}$ there exists a $y \in \mathbb{S}^{1}$ such that $f(x, y)=f(x,-y)$, and for all $y \in \mathbb{S}^{1}$ there exists an $x \in \mathbb{S}^{1}$ such that $f(x, y)=f(-x, y)$.

Proof 3: The restriction of f to any meridian or parallel (or in fact any other homeomorphic copy of \mathbb{S}^{1}) obeys the one-dimensional Borsuk-Ulam theorem.

Claim 4: Let $f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R}$ be a map. Then there exists an $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1}$ such that $f(x, y)=f(-(x, y))$.

Proof 4: Define $g: \mathbb{S}^{1} \rightarrow \mathbb{R}$ by $g(x)=f(x, x)$. Then, by the one-dimensional Borsuk-Ulam theorem, there exists an x such that $g(x)=g(-x)$. So $f(x, x)=f(-x,-x)=f(-(x, x))$.

Claim 5: Let $f: \mathbb{S}^{1} \times \mathbb{S}^{1} \rightarrow \mathbb{R} \times \mathbb{R}$ be a map. Then there exists a point $(x, y) \in \mathbb{S}^{1} \times \mathbb{S}^{1} \subseteq \mathbb{R}^{2} \times \mathbb{R}^{2}$ such that $f(x, y)=\left(f_{1}(-x, y), f_{2}(x,-y)\right)$.

Proof hint 5: Apply one-dimensional Borsuk-Ulam to $\mathbb{S}^{1} \hookrightarrow \mathbb{S}^{1} \times \mathbb{S}^{1} \xrightarrow{f} \mathbb{R}^{2} \xrightarrow{\pi_{1}} \mathbb{R}^{1}$. Then do the same for π_{2}. Then play them against each other.
E.A. Let X be a space and $x \in X$. Consider the set $\mathcal{C}(I, X)$ of all maps $f: I \rightarrow X$. Endow $\mathcal{C}(I, X)$ with the compact-open topology defined on page 285. Consider the subset $L \subseteq \mathcal{C}(I, X)$ consisting of maps f such that $f(0)=x=f(1)$. Endow L with the subspace topology. Via the natural surjection $L \rightarrow \pi_{1}(X, x)$, which sends a loop f to its path homotopy class [f], endow $\pi_{1}(X, x)$ with the quotient topology.
E.B. The standard topology on \mathbb{Z} is discrete. So we need to check, for all $[f] \in \pi_{1}(X, x)$, that the one-point set $\{[f]\} \subseteq \pi_{1}(X, x)$ is open. By the definition of the quotient topology, $\{[f]\}$ is open in $\pi_{1}(X, x)$ if and only if $[f] \subseteq L$ is open in L. By the definition of the subspace topology, $[f]$ is open in L if and only if there exists a U open in $\mathcal{C}(I, X)$ such that $[f]=L \cap U$. By the
definition of the compact-open topology (and how a topology is generated by a subbasis), U is open in $\mathcal{C}(I, X)$ if and only if it is of the form

$$
U=\bigcup_{j \in J} \bigcap_{k \in K_{j}} S\left(C_{k}, U_{k}\right),
$$

where each K_{j} is finite. So in summary we must check, for all loops f based at x in X, that there exist $\left\{\left(C_{k}, U_{k}\right)\right\}_{k \in K_{j}, j \in J}$ such that a loop g is path homotopic to f if and only if $g \in \bigcup \bigcap S\left(C_{k}, U_{k}\right)$.

