
Exam B Solutions Math 354, Winter 2024

B. A lifting of p : E → B is a function p̃ : E → E such that p ◦ p̃ = p. The identity map

i : E → E certainly satisfies p ◦ i = p and thus is a lifting of p. But must a lifting of p be i?

If we could cancel p from both sides of the equation p ◦ p̃ = p, then we could conclude that

p̃ = i. We can do this when p is injective and thus bijective and thus invertible.

However, when p is not injective, p̃ is not necessarily the identity map, because liftings are

not necessarily unique. Consider for example our most-studied covering map, where E = R,
B = S1, and p(x) = (cos 2πx, sin 2πx). Then p̃(x) = x+ k, for any integer k, satisfies p ◦ p̃ = p.

[In fact, this kind of map p̃ ends up being important to the theory of covering spaces. It is

called a deck transformation or covering transformation. See Section 81.]

C.A. Yes, (0, 2) ∪ (3, 5) is homeomorphic to (0, 2) ⊔ (3, 5) by the function

f(x) =

{
(0, x) if x ∈ (0, 2),

(1, x) if x ∈ (3, 5).

However, (0, 2) ∪ (1, 3) is not homeomorphic to (0, 2) ⊔ (1, 3), because the former is a single

interval (0, 3) while the latter is homeomorphic to the union of two disjoint intervals.

[By the way, this ⊔ operation on spaces is called the disjoint union.]

C.B. Yes, X⊔Y must be compact. Before I prove so, notice that U = {0}×X and V = {1}×Y

are open subsets of X ⊔ Y . Moreover, U is homeomorphic to X, and V is homeomorphic to Y .

Let {Uj}j∈J be an open cover of X ⊔ Y . Then {U ∩ Uj}j∈J is an open cover of U , which is

compact. So there exists a finite subset K ⊆ J such that {U ∩ Uj}j∈K is an open cover of U .

Similarly, there exists a finite subset L ⊆ J such that {V ∩Uj}j∈L is an open cover of V . Then

{Uj}j∈K∪L is a finite subcover of the original open cover of X ⊔ Y . So X ⊔ Y is compact.

C.C. Well, X ⊔ Y is not connected (unless X or Y is empty), because the U and V defined

above are non-empty open subsets that partition X ⊔ Y . So X ⊔ Y is not path connected.

So it seems that π1(X ⊔ Y, z) depends on where z is. If z ∈ U , then z = (0, x) for some x,

and π1(X ⊔ Y, z) is naturally isomorphic to π1(X,x). If z ∈ V , then z = (1, y) for some y, and

π1(X ⊔ Y, z) is naturally isomorphic to π1(Y, y).

D. [We know that any map f : S1 → R1 must have a point x ∈ S1 ⊆ R2 such that f(x) = f(−x).

This fact was proved in our Day 09 homework. Because the torus is S1 × S1, we should be able

to say something similar about maps from it. I came up with Claim 0 below. Students came up

with many other answers, a few of which are listed below.]

Claim 0: Let f : S1 × S1 → R × R be a map of the form f(x, y) = (g(x), h(y)). Then there

exists a point (x, y) ∈ S1 × S1 ⊆ R2 × R2 such that f(x, y) = f(−(x, y)).

Proof 0: We know that g : S1 → R has an x such that g(x) = g(−x), and similarly there
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exists a y such that h(y) = h(−y). Then

f(−(x, y)) = f(−x,−y) = (g(−x), h(−y)) = (g(x), h(y)) = f(x, y).

So the point (x, y) has the desired property.

False claim 1: Let f : S1 × S1 → R2 be a map. Then there exists a point (x, y) ∈ S1 × S1 ⊆
R2 × R2 such that f(x, y) = f(−(x, y)).

Disproof 1: Define f by f(x, y) = x ∈ R2. Then, for all (x, y) ∈ S1 × S1,

f(−(x, y)) = f(−x,−y) = −x ̸= x = f(x, y).

False Claim 2: Embed S1 × S1 into R3 so that it is symmetric about the origin. Then every

map f : S1 × S1 → R2 has an x such that f(x) = f(−x).

Disproof 2: Let f be the orthogonal projection onto the x-y-plane.

Claim 3: Let f : S1 × S1 → R be a map. Then along every meridian and every parallel

there are antipodal points that have the same value under f . Precisely, for all x ∈ S1 there

exists a y ∈ S1 such that f(x, y) = f(x,−y), and for all y ∈ S1 there exists an x ∈ S1 such that

f(x, y) = f(−x, y).

Proof 3: The restriction of f to any meridian or parallel (or in fact any other homeomorphic

copy of S1) obeys the one-dimensional Borsuk-Ulam theorem.

Claim 4: Let f : S1 × S1 → R be a map. Then there exists an (x, y) ∈ S1 × S1 such that

f(x, y) = f(−(x, y)).

Proof 4: Define g : S1 → R by g(x) = f(x, x). Then, by the one-dimensional Borsuk-Ulam

theorem, there exists an x such that g(x) = g(−x). So f(x, x) = f(−x,−x) = f(−(x, x)).

Claim 5: Let f : S1×S1 → R×R be a map. Then there exists a point (x, y) ∈ S1×S1 ⊆ R2×R2

such that f(x, y) = (f1(−x, y), f2(x,−y)).

Proof hint 5: Apply one-dimensional Borsuk-Ulam to S1 ↪→ S1 × S1 f−→ R2 π1−→ R1. Then

do the same for π2. Then play them against each other.

E.A. Let X be a space and x ∈ X. Consider the set C(I,X) of all maps f : I → X. Endow

C(I,X) with the compact-open topology defined on page 285. Consider the subset L ⊆ C(I,X)

consisting of maps f such that f(0) = x = f(1). Endow L with the subspace topology. Via the

natural surjection L → π1(X,x), which sends a loop f to its path homotopy class [f ], endow

π1(X,x) with the quotient topology.

E.B. The standard topology on Z is discrete. So we need to check, for all [f ] ∈ π1(X,x), that

the one-point set {[f ]} ⊆ π1(X,x) is open. By the definition of the quotient topology, {[f ]} is

open in π1(X,x) if and only if [f ] ⊆ L is open in L. By the definition of the subspace topology,

[f ] is open in L if and only if there exists a U open in C(I,X) such that [f ] = L ∩ U . By the
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definition of the compact-open topology (and how a topology is generated by a subbasis), U is

open in C(I,X) if and only if it is of the form

U =
⋃
j∈J

⋂
k∈Kj

S(Ck, Uk),

where each Kj is finite. So in summary we must check, for all loops f based at x in X,

that there exist {(Ck, Uk)}k∈Kj ,j∈J such that a loop g is path homotopic to f if and only if

g ∈
⋃⋂

S(Ck, Uk).
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