A.A. The short answer is: all integers $k \leq 2$. From class we know that $\chi\left(\mathbb{S}^{2}\right)=2$ and $\chi\left(\mathbb{R P}^{2}\right)=$ 1. From homework we know that $\chi(X \# Y)=\chi(X)+\chi(Y)-2$. So the Euler characteristic of the connected sum of g real projective planes is $2-g$, and we get $k=2,1,0,-1, \ldots$. Incorporating tori does not give us any other k, because the connected sum of g tori has Euler characteristic $2-2 g$. There is no way to get $k \geq 3$ until problem A.B.
A.B. The short answer is: all integers k. From homework we know that $\chi(X \sqcup Y)=\chi(X)+\chi(Y)$. Therefore the disjoint union of $k \geq 3$ copies of $\mathbb{R P}^{2}$ has Euler characteristic k. This construction handles all k not already handled in problem A.A.
B. Below left is $\mathbb{R} \mathbb{P}^{2}$. Below center is $\mathbb{R P}^{2}$ with an open disk removed. I have added four protocuts labeled i, j, k, l, in preparation for the next step. We cut along j and l and glue along a and b to obtain the labeled polygon below right. That labeled polygon is the closed Möbius strip, because the left and right sides glue with a half twist and the top and bottom sides remain unglued. [The i and k proto-cuts are never actually used. I include them because they might help the reader understand how the pieces are manipulated.]

C. First,

$$
\pi_{1}\left(\mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1}, x\right) \cong \mathbb{Z}^{3}
$$

by a covering space argument or the product theorem for fundamental groups. Second, we know from class that $\pi_{1}\left(\mathbb{S}^{3}, x\right)$ is trivial. Third,

$$
\pi_{1}\left(\mathbb{R} \mathbb{P}^{1} \times \mathbb{R} \mathbb{P}^{2},(x, y)\right) \cong \pi_{1}\left(\mathbb{R P}^{1}, x\right) \times \pi_{1}\left(\mathbb{R P}^{2}, y\right) \cong \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

by the product theorem, the fact that $\mathbb{R P}^{1}$ is homeomorphic to \mathbb{S}^{1}, and what we know of $\mathbb{R} \mathbb{P}^{2}$ from class. Finally, we know from class that $\pi_{1}\left(\mathbb{R} \mathbb{P}^{3}, x\right) \cong \mathbb{Z} / 2 \mathbb{Z}$. These four groups are distinct (not isomorphic to each other), so these four manifolds must be distinct (not homeomorphic to each other).
D. The assumptions of the Seifert-van Kampen theorem are met: U_{1} and U_{2} are open subsets of \mathbb{S}^{3}, and each of them is path connected, and $U_{1} \cap U_{2}=N$ is path connected. Let $x \in N$.

Seifert-van Kampen says that the inclusions $U_{k} \hookrightarrow \mathbb{S}^{3}$ induce an isomorphism

$$
\frac{\pi_{1}\left(U_{1}, x\right) * \pi_{1}\left(U_{2}, x\right)}{K} \rightarrow \pi_{1}\left(\mathbb{S}^{3}, x\right),
$$

where K is the smallest normal subgroup containing all words of the form $\left(i_{1 *}(c)^{-1}, i_{2 *}(c)\right)$ for $c \in \pi_{1}(N, x)$, and $i_{k}: N \hookrightarrow U_{k}$ is the inclusion.

We know that $\pi_{1}\left(U_{1}, x\right) \cong \mathbb{Z} \cong \pi_{1}\left(U_{2}, x\right)$ (by deformation retracting a solid torus onto a circle), and $\pi_{1}(N, x) \cong \mathbb{Z} \times \mathbb{Z}$ (by deformation retracting N onto a torus). We even know $\pi_{1}\left(\mathbb{S}^{3}, x\right) \cong\{0\}$ (from class). So K must be the entire group $\pi_{1}\left(U_{1}, x\right) * \pi_{1}\left(U_{2}, x\right)$.

Here's more insight into K. Let a_{1} and a_{2} be generators of $\pi_{1}\left(U_{1}, x\right)$ and $\pi_{1}\left(U_{2}, x\right)$ respectively. Then $a_{1}=i_{1 *}\left(b_{1}\right)$ and $a_{2}=i_{2 *}\left(b_{2}\right)$, where b_{1} and b_{2} are "parallel" and "meridian" generators of $\pi_{1}(N, x)$. So K contains both

$$
a_{1} \sim\left(a_{1}, 1\right)=\left(i_{1 *}\left(b_{1}^{-1}\right)^{-1}, i_{2 *}(1)\right)
$$

and

$$
a_{2} \sim\left(1, a_{2}\right)=\left(i_{1 *}(1), i_{2 *}\left(b_{2}\right)\right)
$$

That explains, at least sketchily, how K ends up being all of $\pi_{1}\left(U_{1}, x\right) * \pi_{1}\left(U_{2}, x\right)$.
[By the way, here is my rubric, listing how this problem's 12 points were allocated:
1: assumptions are met
2: induced surjection from free product
2: $\pi_{1}\left(U_{1}, x\right) \cong \mathbb{Z} \cong \pi_{1}\left(U_{2}, x\right)$
2: $\pi_{1}(N, x) \cong \mathbb{Z} \times \mathbb{Z}$
2: $\pi_{1}\left(\mathbb{S}^{3}, x\right) \cong\{0\}$
2: so the kernel is the whole group
1: insight into why the kernel should be the whole group.]

