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This is a whirlwind tour of basic group theory, to help topology students who are new to the subject.

A.1 Groups

In a sense, group theory exists to answer the simplest possible algebra problem: Given a and b, find x

such that ax = b. Here is the solution, with careful attention paid to the algebraic rules being used:

b = ax

) a
�1

b = a
�1(ax) (because inverses exist)

= (a�1
a)x (because multiplication is associative)

= 1x (by the meaning of inverses)

= x (by the meaning of 1).

This argument works as long as a, b, and x are understood to be elements of R�{0}. It also works if they

are elements of Q� {0} or C� {0}. That’s because all of these sets form groups under multiplication.

Definition A.1.1. A group is a set G equipped with a function G ⇥ G ! G, usually written as a

multiplication operation (g, h) 7! gh, such that:

1. for all g, h, j 2 G, g(hj) = (gh)j,

2. there exists e 2 G, called the identity, such that for all g 2 G, eg = g = ge, and

3. for all g 2 G there exists g
�1 2 G such that gg�1 = e = g

�1
g.

If it is also true that gh = hg for all g, h 2 G, then G is commutative (or Abelian).

In the groups Q � {0}, R � {0}, and C � {0}, the number 1 plays the role of e. These three groups

are commutative, but many important groups are not commutative.

Example A.1.2. Let GL(n,R) be the set of invertible real n ⇥ n matrices. Let SL(n,R) be the set of

determinant-1 real n⇥ n matrices. These are both groups under matrix multiplication, with the identity

matrix I playing the role of e. These groups are commutative if and only if n = 1.
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In all of the foregoing examples, we call the group operation multiplication, and we write it as

multiplication. However, in some groups the operation is not called or written as multiplication. Here

are three examples where the group operation is addition.

Example A.1.3. The integers Z form a group under addition +, with 0 playing the role of e and �a

playing the role of a
�1. Similarly, Q, R, and C are groups under addition. All of these groups are

commutative.

Example A.1.4. Let V be any vector space, such as V = Rn. So V has an addition operation and a

scalar multiplication operation, which obey some axioms. Forget scalar multiplication and the axioms that

involve it. Then you get a commutative group under addition, with ~0 playing the role of e and �~v playing

the role of ~v�1.

Example A.1.5. For any integer m, let Z/mZ be the set of equivalence classes of integers, where a ⇠ b

if and only if a�b is a multiple of m. Commonly we focus on m � 2. In those cases, we can conceptualize

Z/mZ as the set {0, 1, . . . ,m� 1}. This set carries an operation of addition modulo m, under which it is

a group. For example, in Z/12Z, we can compute 8 + 11 ⇠ 19 ⇠ 7. This group is commutative.

Here are two more examples, where the group operation is neither addition nor multiplication.

Example A.1.6. Let X be a set, and let Aut(X) be the set of all bijections f : X ! X. Then Aut(X)

is a group under function composition �. The identity element is the identity function i : X ! X. This

group is not commutative except in trivial cases.

Example A.1.7. If (X,x) is a pointed topological space, then the fundamental group ⇡1(X,x) is a group

under concatenation ⇤. The identity element is the constant path class [ex]. Some fundamental groups

are commutative and some are not.

Here are a non-example and an exercise.

Example A.1.8. Consider the cross product ⇥ on three-dimensional vectors, which is defined by

~v ⇥ ~w =

2

664

v1

v2

v3

3

775⇥

2

664

w1

w2

w3

3

775 =

2

664

v2w3 � v3w2

v3w1 � v1w3

v1w2 � v2w1

3

775 .

It is a function R3⇥R3 ! R3, and we think of it as a kind of multiplication, but R3 is not a group under

⇥. For one thing, there is no identity element for ⇥.

Exercise A.1.9. Let G be a group. Prove that there is only one e 2 G that satisfies the properties of the

identity. Prove that, for each g 2 G, there is only one g
�1 2 G that satisfies the properties of the inverse.

A.2 Homomorphisms

In linear algebra, a vector space is a setting where linear behavior can happen, and a linear transformation

is a function that respects that linear structure. In topology, a topological space is a setting where

continuity can be defined, and a continuous function is a function that respects that topological structure.

Similarly, in group theory, a group is a setting where (generalized) multiplication can happen, and we

need a notion of functions that respect that multiplication.

48



Introductory Topology Math 354, Winter 2024

Definition A.2.1. Let G and H be groups. A function f : G ! H is a homomorphism if, for all

g1, g2 2 G,

f(g1g2) = f(g1)f(g2).

That is, computing a product g1g2 2 G and then sending it to f(g1g2) 2 H produces the same answer as

sending g1, g2 to f(g1), f(g2) 2 H and computing their product there. An isomorphism is a bijective

homomorphism. Two groups are isomorphic if there exists an isomorphism from one to the other.

One can check that the inverse of an isomorphism is an isomorphism, and the composition of two

isomorphisms is an isomorphism. It follows that being isomorphic is an equivalence relation on groups.

Two groups that are isomorphic are essentially identical.

Example A.2.2. The function exp : R ! (0,1) defined by

exp(x) = e
x =

1X

k=0

x
k
/k!

has the property that exp(x + y) = exp(x) exp(y). Therefore it is a homomorphism from the group R
under addition to the group R� {0} under multiplication. It is injective but not surjective onto R� {0}.

Example A.2.3. For any m � 2, define a function f : Z/mZ ! C by f(k) = e
i2⇡k/m. Notice that

f(k + `) = e
i2⇡(k+`)/m = e

i2⇡k/m
e
i2⇡`/m = f(k)f(`).

It follows that f is a homomorphism from Z/mZ to the group C�{0} under multiplication. It is injective

and not surjective.

Example A.2.4. The determinant of n ⇥ n matrices obeys det(AB) = det(A) det(B). It follows that

det is a homomorphism from GL(n,R) to the group R � {0} under multiplication. It is surjective and

not injective.

Example A.2.5. For any n ⇥ n real matrix A, there is a corresponding linear transformation f(A) :

Rn ! Rn defined by f(A)(~v) = A~v. This correspondence obeys f(AB) = f(A) � f(B). It follows that f

is a homomorphism from GL(n,R) to Aut(Rn). It is injective and not surjective.

Here’s a non-example.

Example A.2.6. Consider f(x) = x
2 as a function from the group R under addition to itself. To say

that it is a homomorphism is to say that f(x+ y) = f(x) + f(y), which is to say that (x+ y)2 = x
2 + y

2,

which isn’t true (although countless algebra novices have wished it to be true).

A.3 Subgroups

When a group is sitting inside another group in a well-behaved, compatible way, we use the following

term of jargon.

Definition A.3.1. Let G be a group and H ✓ G any subset. Then H is a subgroup of G if the group

operation on G, when restricted to H, defines a group operation H ⇥H ! H.
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Concretely, to check that a subset H is a subgroup, you need to check that the product of two elements

of H is an element of H, that e 2 H, and that the inverse of any element of H is an element of H. Here

are some examples.

Example A.3.2. In all of the subset relationships Q�{0} ✓ R�{0} ✓ C�{0}, the subset is a subgroup

of the larger group under multiplication.

Example A.3.3. In all of the subset relationships Z ✓ Q ✓ R ✓ C, the subset is a subgroup of the larger

group under addition.

Example A.3.4. SL(n,R) is a subgroup of GL(n,R).

Here are some non-examples and an exercise.

Example A.3.5. Let X be the set of real n ⇥ n matrices of determinant �1. Then X is a subset of

GL(n,R), but it is not a subgroup. For one thing, the product of two matrices in X has determinant 1

and hence is not in X. For another, I 62 X. On the other hand, the inverse of a matrix in X is a matrix

in X. So, of the three checks that a subgroup must pass, X fails two and passes one.

Example A.3.6. R is a group under addition, R � {0} is a group under multiplication, and the latter

is a subset of the former. But R � {0} is not a subgroup of R, because the group operation on R � {0}
is not the restriction of the group operation on R. A subgroup is not just a group sitting inside a larger

group; it is a group sitting inside a larger group in a compatible way.

Example A.3.7. Z/mZ is not a subgroup of Z. If m � 2 and we think of Z/mZ as the set {0, 1, . . . ,m�
1}, then we can conceptualize Z/mZ as a subset of Z. However, even then the group operation on Z/mZ
is not the restriction of the group operation on Z.

Exercise A.3.8. Let f : G ! H be a homomorphism. Prove that f(G) is a subgroup of H. If G is

commutative, then must f(G) be commutative? What about the converse?

A.4 Kernels and normal subgroups

In this section, we define two concepts that end up being actually the same concept.

Definition A.4.1. Let f : G ! H be a homomorphism. Then f
�1(e) ✓ G is the kernel of f .

Example A.4.2. The kernel of exp : R ! (0,1) is {0}. In general, the identity element is always in

the kernel, and a homomorphism is injective if and only if there is nothing else in its kernel.

Example A.4.3. The kernel of det : GL(n,R) ! R� {0} is SL(n,R).

Example A.4.4. Consider the map Z ! Z/mZ that sends each k to its equivalence class [k] modulo m.

The kernel is mZ = {. . . ,�2m,�m, 0,m, 2m, . . .}.

In all of the preceding examples, the kernel is a subgroup of the domain. That is no accident. The

kernel is always a subgroup. In fact, the kernel is always a special kind of subgroup, which we define now.

Definition A.4.5. A subgroup H of G is normal if, for all g 2 G and h 2 H, ghg�1 2 H.
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Theorem A.4.6. If f : G ! H is a homomorphism, then the kernel of f is a normal subgroup of G.

Proof. Let K ✓ G be the kernel of f . We have already mentioned that e 2 K. If g1, g2 2 K, then

f(g1g2) = f(g1)f(g2) = ee = e,

so g1g2 2 K. If g 2 K, then

f(g�1) = ef(g�1) = f(g)f(g�1) = f(gg�1) = f(e) = e.

These steps establish that K is a subgroup of G. Finally, let g 2 G and k 2 K. Then

f(gkg�1) = f(g)f(k)f(g�1) = f(g)f(g�1) = f(gg�1) = e.

So gkg
�1 2 K, and K is normal.

So every kernel is a normal subgroup. In the next section, we essentially prove the converse: Every

normal subgroup is a kernel, in a canonical way.

Exercise A.4.7. Let G be a commutative group. Prove that every subgroup of G is normal.

A.5 Quotients

It’s useful to have some ways to build new groups out of old groups. Here’s one way.

Definition A.5.1. Let H be a normal subgroup of G. Define an equivalence relation on G by declaring

that g1 ⇠ g2 if g1g
�1
2 2 H. Let [g] denote the equivalence class of g 2 G, and let G/H denote the set of

equivalence classes. This G/H is called the quotient of G by H. It is pronounced “G mod H”.

Example A.5.2. What we’ve been calling Z/mZ really is the quotient of the group Z (under addition)

by the normal subgroup mZ.

Theorem A.5.3. The quotient G/H is a group under the operation [g1][g2] = [g1g2], and the function

f : G ! G/H defined by f(g) = [g] is a group homomorphism with kernel H.

Proof. First we should check that the operation [g1][g2] = [g1g2] is well-defined. To that end, suppose

that j1 ⇠ g1 and j2 ⇠ g2. Then g2j
�1
2 2 H, so g1g2j

�1
2 g

�1
1 2 H by normality. And g1j

�1
1 2 H, so

(g1g2j
�1
2 g

�1
1 )(g1j

�1
1 ) = g1g2j

�1
2 j

�1
1 = (g1g2)(j1j2)

�1

is also an element of H. Thus g1g2 ⇠ j1j2, and the operation is well-defined.

With well-definedness out of the way, the rest of the proof is easier. It is not di�cult to check that

G/H is a group under that operation. For example, the identity in G/H is [e], and [g]�1 = [g�1], and so

on. Also, f is a homomorphism because f(g1g2) = [g1g2] = [g1][g2] = f(g1)f(g2). Finally, [g] = [e] if and

only if ge�1 2 H, which happens if and only if g 2 H. So the kernel is H.

In the preceding proof, it is crucial that H be a normal subgroup. Otherwise, the set of equivalence

classes does not inherit a group structure from G in any obvious way.

Exercise A.5.4. My definition of the quotient G/H is a little unusual. The usual way to define the

quotient is like this: For any g 2 G, define Hg = {hg : h 2 H}; then g1 ⇠ g2 if Hg1 = Hg2. Prove that

this new ⇠ is actually identical to the ⇠ used above. Does your proof require H to be normal?
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A.6 Miscellany

While we’re at it, here’s another way to make a new group out of old groups.

Definition A.6.1. Let G and H be groups. Define an operation · on the Cartesian product set G ⇥H

by

(g1, h1) · (g2, h2) = (g1g2, h1h2).

Then G⇥H is the product group.

Example A.6.2. The product of the group R (under addition) with itself is the group R⇥R with group

operation (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2). In other words, it is R2 without scalar multiplication.

Let’s prove one final theorem that ties together several of the ideas in this whirlwind tutorial.

Theorem A.6.3. Let f : G ! H be a homomorphism with kernel K ✓ G. Then the map i : G/K !
f(G) ✓ H defined by i([g]) = f(g) is an isomorphism between G/K and f(G).

Proof. First we should check that i is well-defined. Suppose that j ⇠ g. Then jg
�1 2 K, so

e = f(jg�1) = f(j)f(g�1) = f(j)f(g)�1
.

But inverses are unique (check), so it must be that f(j) = f(g). Thus i is well-defined. Second, i is a

homomorphism because

i([g1][g2]) = i([g1g2]) = f(g1g2) = f(g1)f(g2) = i([g1])i([g2]).

Third, i is surjective onto f(G) because any element of f(G) is of the form f(g) for some g 2 G, and

i([g]) = f(g) for that g. Finally, is i injective? Well, let [g] be an element of the kernel of i. Then

e = i([g]) = f(g), so g 2 K, which means that [g] is the identity element of G/K. Thus i has trivial

kernel and is injective.

Example A.6.4. The determinant tells us that GL(n,R)/SL(n,R) isomorphic to R� {0}.

Example A.6.5. The projection G ⇥ H ! G is a surjective homomorphism with kernel {e} ⇥ H.

Therefore the quotient (G⇥H)/({e}⇥H) is isomorphic to G.
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